

CORROSION RESISTANT PIPE FITTINGS

INDEX SPECIAL DATA

CORROSION RESISTANCE DATA	87-104
DIMENSIONAL TOLERANCES, FITTINGS	105
EXPANDING PROCEDURES: Rol-Tite Expander	35- 37 38
PIPE DATA: Chemical Compositions Stainless Steels, Inco Alloys, Hastelloy, Titanium	
Dimensional Comparison	8
Internal Working Pressures At Various Temperatures Stainless Steels & Alloy 20 Cb-3	69- 73 75- 76
Span & Deflection Data Formula Span Charts - Indoors Outdoors Drainage Deflection Charts	77 78 & 80 79 & 81 82 85- 86
TEST DATA	106-107
WEIGHTS, Fittings & Flanges	108
WELDING, BRAZING, SOLDERING DATA General Welding - Stainless Steels Brazing - Stainless Steels Soldering - Stainless Steels	64- 65 67 66 66

Jacketed Pipe Fittings & Assemblies PAGES 44 to 63

Speedline

90° Elbows

PAGE 9

Speedline

45° Elbows

PAGE 10

Speedline

180° Return Bends

PAGE 11

Speedline

Straight Tees

PAGE 13

Speedline
Reducing
Outlet Tees

Speedline
Crosses and
Reducing
Crosses

COPYRIGHT 1980 SPEEDLINE, INC.

Speedline Fittings — T/D (Taper Design) Insert Flanges — Rol-Tite Expanders Registered Trademarks of Speedline, Inc.

Speedline

Concentric Reducers

PAGE 16

Speedline Aligning Connectors

PAGE 25

Speedline **Eccentric** Reducers

PAGE 18

Speedline /D Insert anges

T/D Reducing Insert Flanges—PAGE 32

Speedline

Caps

PAGE 19

Speedline

Rol-Tite

PAGE 35 Standard Expanders—PAGE 38

Speedline

Laterals

PAGE 20

True Y-PAGE 21

Speedline

Belled End **Fittings**

PAGE 39

Speedline

Stub Ends

PAGE 23 Back-Up Flanges— PAGE 33

PAGE 27

A Product of

Philadelphia, Pennsylvania

Inco, Inconel and Monel are registered trademarks of Huntington Alloy Products Div., International Nickel Co., Inc. Hastelloy is a registered trademark of Union Carbide Corporation.

Speedline

TANGENTIAL DESIGN PROVIDES

BUILT-IN ADVANTAGES AND VERSATILITY THAT SPEED PROCESS PIPE ASSEMBLY.

A new standard in process piping economy was established when SPEEDLINE introduced *Tangential* design. The extra straight section on every end of every fitting provides installation advantages that speed and simplify assembly . . . regardless of joining method.

Fitting dimensions, pages 9 to 25.

Extra fitting length means welds can be made *straight* to *straight* . . . away from change in direction. There is plenty of fitting length for use of a simple holding clamp that will insure positive alignment; also speed assembly.

Welding data, pages 64 to 68.

SPEEDLINE extra length facilitates make up of socket joints, too, with use of Aligning Connectors that permit cost saving *in place* pre-assembly. Alignment and fit-up can be accomplished faster and welding is easier, even in difficult locations.

Aligning Connector data, pages 24-25.

SPEEDLINE design adds flanging advantages not possible with conventional fittings. Extra fitting length allows plenty of room to add T/D Insert Flanges to any end of any SPEEDLINE Fitting by expanding (rolling) method or by welding.

T/D Insert Flange data, page 29.

TANGENTIAL DESIGN PROVIDES FITTING LENGTH SUITABLE FOR USE WITH MANY

TYPES OF DEMOUNTABLE JOINTS.

Assembly of patented T/D Insert Flanges does not require special clamps, nor is a welder or welding equipment needed. Leak-proof performance is assured by simply expanding (rolling) fittings or pipe into serrations on ID of flange insert.

Expanding data, pages 35 to 38.

If welding flanges are required, T/D Insert Flanges can replace more costly welding neck, slip-on or socket welding flanges. Fillet welds at back and/or front of the flange will not interfere with free rotation of flange for alignment of bolt holes.

Welding data, pages 64 to 68.

Expanded on or welded on, it is a simple matter to free the T/D Flange from the insert. Then the flange can be rotated to align bolt holes. Provides all the assembly advantages of MSS stub ends and back-up flanges but at a lower cost.

SPEEDLINE Type C Stub Ends are more economical to use than either MSS Type A and B or ASA stub ends. Specially designed SPEEDLINE forming equipment ensures quality stub ends with minimum inside corner radius and carefully controlled lap thickness.

Stub End data, page 22. Back-up Flange data, page 33.

FITTINGS CAN BE BUTT-WELDED, FLANGED, SOCKET JOINED, GROOVED OR USED WITH UNIONS. SEPARATE INVENTORIES CAN BE ELIMINATED.

SPEEDLINE Union design eliminates troublesome ground joints. It is *gasket seated* and *bi-metallic* to eliminate leakage . . . and to permit easier make-up and disassembly, without galling or seizing. Unions are available in three styles . . . for socket welding, butt welding or expanding.

The SPEEDLINE Union provides a fitting that is economical as well as lighter in weight than flanged joints. A union also requires much less room and can be more quickly disconnected for cleaning or inspections. *Union data, page 26.*

SPEEDLINE Belled End Fittings are also available to provide an economical socket type fitting designed for joining by welding or brazing. Square cut pipe readily fits into carefully sized sockets to speed alignment and assembly procedures.

Belled End Fitting data, pages 39 to 43.

Whenever a process requires jacketed piping, evaluate the advantages that can be gained with T/D Jacketed piping Insert Flanges. This unique component can be used to increase efficiency of the system and to insure easier installation.

Jacketed Piping data, pages 44 to 63.

A PROCESS PIPING SYSTEM THAT IS READILY ADAPTABLE TO ALL DESIGN REQUIREMENTS AND ASSEMBLY METHODS

DIMENSIONED FOR MACHINE WELDING

SPEEDLINE extra fitting length provides important advantages when automated welding equipment is employed at the job site.

Ample clearances expedite set-up and facilitate operation to insure maximum production per unit.

GROOVED END FITTINGS

When mechanical couplings are specified SPEEDLINE Fittings can be grooved on the job or supplied already grooved.

The extra tangent length common to all SPEEDLINE Fittings makes it possible to utilize *any* connecting method. Inventories of special types of fittings can be reduced or eliminated.

To expedite assembly at the job site SPEED-LINE Fittings may be ordered with Insert Flanges assembled on all or specified ends. Illustrated at right is a customer order calling for Insert Flanges on one end of fitting. Grooving was specified for the other end.

Speedline DE

DESIGN VERSATILITY CAN SIMPLIFY ASSEMBLY OF COMPLEX PROCESS PIPING

Speedline Tangential Elbows, Tees and Crosses in sizes through and including $2\frac{1}{2}$ " IPS are dimensioned so that ends of all fittings line up to present a neat and orderly appearance when a manifold arrangement is required. Valves, sight gauges, or other piping components can be readily aligned without costly additions or adjustments.

There is a difference in pipe fittings.

THESE Speedling FEATURES INSURE QUALITY . . . IMPROVE PERFORMANCE

- Reliability begins with SPEEDLINE exacting raw material specifications.
- Rigid in-process production controls and critical inspection standards maintain highest quality.
- Modern production equipment and patented forming methods assure dependable performance.
- Uniform wall thickness at the Bend—in accordance with Specification MSS-SP-43.
- Every stainless steel fitting annealed and pickled.
- Every fitting marked with Size, Analysis, Schedule and Production Code.
- Certified chemical analysis available on request for all fittings.
- Full flange thickness—to ANSI Dimensions plus patented Taper Design advantages.
- Center to end dimensions of SPEEDLINE 90° Elbows, Tees and Crosses are the same for any given size ½" through 2½" IPS, to facilitate manifolding.
- Complete Fitting Line—including Eccentric Reducers, Crosses, Reducing Tees, Laterals, etc.
- Complete selection of metals—Stainless Steel, Monel, Nickel, Alloy 20Cb-3. Other alloys on application.
- Extensive distributor stocks and plant reserve stocks assure availability.

Uniform wall thickness at the Bend in accordance with Specification MSS-SP-43 is assured by SPEEDLINE patented cold-forming process.

SPEEDLINE Fittings are clearly marked with Size, Analysis, Schedule and Production Code.

Patented SPEEDLINE T/D (Taper Design) Insert Flange speeds assembly.

Speedline

TANGENTIAL FITTINGS MAKE IT EASIER TO REALIZE ALL OF THE COST SAVING ADVANTAGES OF LIGHT-WALL PROCESS PIPING.

Use of light wall Schedule 5 and 10 Pipe and SPEEDLINE Fittings, instead of Schedule 40, can reduce installed costs as much as 50%.

Each length of pipe shown above costs the same; the difference is in the wall thickness. The lighter the wall, the more pipe footage for your money. And light wall pipe provides a more than adequate factor of safety for most low pressure process lines.

With Schedule 40 pipe and screwed fittings, ½ of the wall thickness is lost at the threads. SPEEDLINE Fittings and light wall pipe provide the same effective wall thickness at a considerably lower installed cost.

	PIPE COMPARISON DATA (INCHES) STAINLESS STEEL								
Pipe		Wall Thickness/Wt. per Foot (Lbs.)							
Size I.P.S.	O.D.	Schedule 5S	Schedule 10S	Schedule 40S					
1/2	.840	.065 .538	.083 .620	.109 .850					
3/4	1.050	.065 .684	.083 .867	.113 1.130					
1	1.315	.065 .868	.109 1.402	.133 1.678					
11/4	1.660	.065 1.107	.109 1.800	.140 2.272					
1½	1.900	.065 1.274	.109 2.102	.145 2.717					
2	2.375	.065 1.604	.109 2.638	.154 3.652					
21/2	2.875	.083 2.475	,120 3.531	.203 5.793					
3	3.500	.083 3.029	.120 4.332	.216 7.575					
4	4.500	. <mark>083</mark> 3.915	.120 5.613	.237 10.790					
6	6.625	.109 7.585	.134 9.289	.280 18.974					

See - Page 69 For Pressure-Temperature Data Page 77 For Pipe Span Data

SPECIFY LIGHT WALL PROCESS PIPE AND SPEEDLINE FITTINGS TO OBTAIN THESE BENEFITS:

Lower purchase costs.

Reduced labor costs.

Decreased hanger and support requirements.

More installation versatility.

Fewer fitting items to inventory.

Nearby distributor stocks of SPEEDLINE Fittings.

90° ELBOW

Long Radius • Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

The extra length of the 90° Elbow on both ends of the bend permits butt welding, socket welding, flanging or union connection. This versatility is a feature of the entire line of Speedline Fittings.

Pipe Size I.P.S.	0.D. D	Radius R	Tangent L	Center to End A	Sch. 5S Wall T	Sch. 10S Wall T
1/2	.840	11/2	7/8	23/8	.065	.083
3/4	1.050	11/8	11/2	25/8	.065	.083
1	1.315	1 1/2	13/8	27/8	.065	.109
11/4	1.660	1 1/8	11/4	31/8	.065	.109
11/2	1.900	21/4	11/4	31/2	.065	.109
2	2.375	3	11/4	41/4	.065	.109
21/2	2.875	3¾	11/4	5	.083	.120
3	3.500	41/2	2	61/2	.083	.120
4	4.500	6	21/4	81/4	.083	.120
6	6.625	9	21/4	111/4	.109	.134

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 55, 105, 405, are in accordance with ANSI B36.19.

ANSI B30.JY.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Bend radii are 1.5 x nominal pipe size except $1\!/2''$ size which is a 3 x nominal pipe size.

Weights of fittings are shown on page 108.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

45° ELBOW

Long Radius . Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Speedline Tangential designs makes it easier and less expensive to use the particular installation procedure best suited to the application. It's the only design that can be butt welded or readily utilized for other joining methods.

Pipe Size I.P.S.	0.D. D	Radius R	Tangent L	Center to End B	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	11/2	7/8	11/2	.065	.083
3/4	1.050	11/8	11/2	115/16	.065	.083
1	1.315	11/2	13/8	2	.065	.109
11/4	1.660	1 1/8	11/4	2	.065	.109
11/2	1.900	21/4	11/4	2 3/16	.065	.109
2	2.375	3	11/4	21/2	.065	.109
21/2	2.875	3 3/4	11/4	213/16	.083	.120
3	3.500	4 1/2	2	3 1/8	.083	.120
4	4.500	6	2 1/4	4 3/4	.083	.120
6	6.625	9	2 1/4	6	.109	.134

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

AINSI BJO. 17.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Bend radii are 1.5 x nominal pipe size except $1\!/2''$ size which is a 3 x nominal pipe size.

Weights of fittings are shown on page 108.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43. Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

180° RETURN BEND **Tangential Design**

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Increased center to center dimension provides sufficient clearance for addition of flanges to both ends, without fouling.

Center to center dimensions of 3", 4" and 6" sizes are the same as non-tangential long radius welding return bends and therefore are Interchangeable.

Pipe Size I. P. S.	0. D. D	Center to Center O	Center to End A	Tangent L	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	3 %	2 3/8	7/8	.065	.083
3/4	1.050	4	2 5/8	11/2	.065	.083
1	1.315	5	2 1/8	13/8	.065	.109
11/4	1.660	5 1/2	3 1/8	11/4	.065	.109
11/2	1.900	6	3 1/2	11/4	.065	.109
2	2.375	8	5 1/2	11/4	.065	.109
21/2	2.875	9	5	11/4	.083	.120
3	3.500	9	61/2	2	.083	.120
4	4.500	12	8 1/4	21/4	.083	.120
6	6.625	18	111/4	21/4	.109	.134

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

Weights of fittings are shown on page 108.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43.

Smooth pickle finish, free of surface imperfections, is easy to polish when high lustre is required for appearance.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

SPEEDLINE return bends are manufactured by welding two SPEEDLINE 90° elbows together

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Tangential design permits flanging without fouling or selection of any other joining method or combination of methods.

Crosses, Straight Tees and Reducing Outlet Tees with longer side outlets (up to 16" long, annealed), are available on special order.

Pipe Size I. P. S.	0. D. D	Center to End C	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	2 3/8	.065	.083
3/4	1.050	2 5/8	.065	.083
1	1.315	2 1/8	.065	.109
11/4	1.660	3 1/8	.065	.109
11/2	1.900	31/2	.065	.109
2	2.375	4 1/4	.065	.109
21/2	2.875	5	.083	.120
3	3.500	5	.083	.120
4	4.500	5 3/4	.083	.120
6	6.625	7 1/8	.109	.134

Sch. 40S on application.

Reducing crosses also available—see reducing outlet tees page 14 for outlet dimensional data.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

ANSI 836.19.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Weights of fittings are shown on page 108.

STRAIGHT TEES

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Tangential design provides the extra length that is particularly useful when flanges or other fittings are to be attached to one or more ports of the tee.

Straight Tees, Reducing Outlet Tees and Crosses, with longer side outlets (up to 16" long, annealed) are available on special order.

Pipe Size I.P.S.	0.D. D	Center to End C	Sch 5S Wall T	Sch 10S Wall T	
1/2	.840	2 3/8	.065	.083	
3/4	1.050	2 5/8	.065	.083	
1	1.315	2 1/8	.065	.109	
11/4 1.660		3 1/8	.065	.109	
11/2	1.900	3 1/2	.065	.109	
2	2.375	4 1/4	.065	.109	
21/2	2.875	5	.083	.120	
3	3.500	5	.083	.120	
4 4.500		5 3/4	.083	.120	
6	6.625	7 1/8	.109	.134	

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

ANSI 630.17.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Weights of fittings are shown on page 108.

REDUCING OUTLET TEES

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

Reducing Outlet Tees, Straight Tees and Crosses, with longer side outlets (up to 16" long, annealed) are available on special order.

Tees with side outlet larger than run (bull nose tee) can be furnished on special order. Center to end dimension of side outlet will be longer than for Reducing Outlet Tees.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Weights of fittings are shown on page 108.

REDUCING OUTLET TEES

Pipe	Size	0	.D.	Center	Sch Wa	all	Sch 1 Wa	11
i.P Run		D _i Run	D ₂ Outlet	to End C	T _i Run	T ₂ Outlet	T, Run	T ₂ Outlet
3/4	1/2	1.050	.840	2 5/8	.065	.065	.083	.083
-	1/2	1.315	.840	2 1/8	.065	.065	.109	.083
1	3/4	1.315	1.050	2 1/8	.065	.065	.109	.083
	1/2	1.660	.840	3 1/8	.065	.065	.109	.083
11/4	3/4	1.660	1.050	31/8	.065	.065	.109	.083
	1	1.660	1.315	3 1/8	.065	.065	.109	.109
	1/2	1.900	.840	3 1/2	.065	.065	.109	.083
11/2	3/4	1.900	1.050	3 1/2	.065	.065	.109	.083
1 72	1	1.900	1.315	3 1/2	.065	.065	.109	.109
	11/4	1.900	1.660	3 1/2	.065	.065	.109	.109
	1/2	2.375	.840	4 1/4	.065	.065	.109	.083
	3/4	2.375	1.050	4 1/4	.065	.065	.109	.083
2	1	2.375	1.315	4 1/4	.065	.065	.109	.109
	11/4	2.375	1.660	4 1/4	.065	.065	.109	.109
	11/2	2.375	1.900	4 1/4	.065	.065	.109	.109
	1/2	2.875	.840	5	.083	.065	.120	.083
	3/4	2.875	1.050	5	.083	.065	.120	.083
0.1/-	1	2.875	1.315	5	.083	.065	.120	.109
2 1/2	11/4	2.875	1.660	5	.083	.065	.120	.109
	11/2	2.875	1.900	5	.083	.065	.120	.109
	2	2.875	2.375	5	.083	.065	.120	.109
	1/2	3.500	.840	5	.083	.065	.120	.083
	3/4	3.500	1.050	5	.083	.065	.120	.083
	1	3.500	1.315	5	.083	.065	.120	.109
3	11/4	3.500	1.660	5	.083	.065	.120	.109
	11/2	3.500	1.900	5	.083	.065	.120	.109
	2	3.500	2.375	5	.083	.065	.120	.109
	21/2	3.500	2.875	5	.083	.083	.120	: .120
	1/2	4.500	.840	5 3/4	.083	.065	.120	.083
	3/4	4.500	1.050	5 3/4	.083	.065	.120	.083
	1	4.500	1.315	5 3/4	.083	.065	.120	.109
4	11/4	4.500	1.660	5 3/4	.083	.065	.120	.109
4	11/2	4.500	1.900	5 3/4	.083	.065	.120	.109
	2	4.500	2.375	5 3/4	.083	.065	.120	.109
	21/2	4.500	2.875	5 3/4	.083	.083	.120	.120
	3	4.500	3.500	5 3/4	.083	.083	.120	.120
	1/2	6.625	.840	7 1/8	.109	.065	.134	.083
	3/4	6.625	1.050	7 1/8	.109	.065	.134	.083
	1	6.625	1.315	7 1/8	.109	.065	.134	.109
	11/4	6.625	1.660	7 1/8	.109	.065	.134	.109
6	1 1/2	6.625	1.900	7 1/8	.109	.065	.134	.109
	2	6.625	2.375	7 1/8	.109	.065	.134	.109
	2 1/2	6.625	2.875	7 1/8	.109	.083	.134	.120
	3	6.625	3.500	7 1/8	.109	.083	.134	.120
	4	6.625	4.500	7 1/8	.109	.083	.134	.120

Sch. 40S on application.

CONCENTRIC REDUCERS

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Speedline design makes
it easier to butt weld
reducers and they can
also be flanged or socket
welded with equal ease
because tangential
design adds maximum
versatility to every
Speedline fitting.

CONCENTRIC REDUCERS

Pine	Size	0.	n		Len	Tangent Length (minimum)		5S all	Sch 10S Wall	
I.F Large End	S. Small	D _i Large End	D ₂ Small End	Length H	Li Large End	L ₂ Small End	T ₁ Large End	T ₂ Small End	T: Large End	T ₂ Small End
3/4	1/2	1.050	.840	33/4	7/8	7/8	.065	.065	.083	.083
1	1/2 3/4	1.315 1.315	.840 1.050	3 ³ / ₄ 3 ³ / ₄	7/8 7/8	7/8 7/8	.065 .065	.065 .065	.109 .109	.083 .083
11/4	3/4 1	1.660 1.660	1.050 1.315	3¾ 3¾	7/8 7/8	7/8 7/8	.065 .065	.065 .065	.109 .109	.083 .109
11/2	1/2 3/4 1 1 11/4	1.900 1.900 1.900 1.900	.840 1.050 1.315 1.660	3¾ 3¾ 3¾ 3¾ 3¾	7/8 7/8 7/8 7/8	7/8 7/8 7/8 7/8	.065 .065 .065 .065	.065 .065 .065	.109 .109 .109 .109	.083 .083 .109 .109
2	1/2 3/4 1 11/4 11/2	2.375 2.375 2.375 2.375 2.375 2.375	.840 1.050 1.315 1.660 1.900	3¾ 3¾ 3¾ 3¾ 3¾ 3¾	1 1/8 1 1/8 1 1/8 1 1/8 1 1/8	7/8 7/8 7/8 7/8 7/8	.065 .065 .065 .065 .065	.065 .065 .065 .065	.109 .109 .109 .109	.083 .083 .109 .109
21/2	1 1½ 1½ 2	2.875 2.875 2.875 2.875	1.315 1.660 1.900 2.375	51/4 51/4 51/4 51/4	1 1/8 1 1/8 1 1/8 1 1/8	7/8 7/8 7/8 11/8	.083 .083 .083 .083	.065 .065 .065 .065	.120 .120 .120 .120	.109 .109 .109 .109
3	1 1½ 1½ 2 2½	3.500 3.500 3.500 3.500 3.500	1.315 1.660 1.900 2.375 2.875	51/4 51/4 51/4 51/4 51/4	1 1/8 1 1/8 1 1/8 1 1/8. 1 1/8	7/8 7/8 7/8 11/8 11/8	.083 .083 .083 .083 .083	.065 .065 .065 .065 .083	.120 .120 .120 .120 .120	.109 .109 .109 .109 .120
4	2 2½ 3	4.500 4.500 4.500	2.375 2.875 3.500	51/4 51/4 51/4	1 1/8 1 1/8 1 1/8	11/8 11/8 11/8	.083 .083 .083	.065 .083 .083	.120 .120 .120	.109 .120 .120
6	3 4	6.625 6.625	3.500 4.500	9 9	3¾ 3¾	1½ 1½	.109 .109	.083 .083	.134 .134	.120 .120

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE

Weights of fittings are shown on page 108.

Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manu-

fittings can be supplied beveled in accordance with facturing code in accordance with MSS SP-43 and MSS SP-43.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Smooth pickle finish, free of surface imperfections, is easy to polish when high lustre is required for appearance.

ECCENTRIC REDUCERS

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

Pipe	Size	0.D.		Tangent Length (minimum		igth		h 5S all	Sch 10S Wall	
I.P Large End	.S. Small End	D, Large End	D ₂ Small End	Length H	Li Large End	L ₂ Small End	T ₁ Large End	T ₂ Small End	T, Large End	T ₂ Small End
3/4	1/2	1.050	.840	3¾	7/8	7/8	.065	.065	.083	.083
1	1/2 3/4	1.315 1.315	.840 1.050	3¾ 3¾	7/8 7/8	7/8 7/8	.065 .065	.065 .065	.109 .109	.083 .083
11/4	1	1.660	1.315	3¾	7/8	7/8	.065	.065	.109	.109
11/2	3/4 1 1 1/4	1.900 1.900 1.900	1.050 1.315 1.660	3¾ 3¾ 3¾	7/8 7/8 7/8	7/8 7/8 7/8	.065 .065 .065	.065 .065 .065	.109 .109 .109	.083 .109 .109
2	1 11/4 11/2	2.375 2.375 2.375	1.315 1.660 1.900	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	1 1/8 1 1/8 1 1/8	7/8 7/8 7/8	.065 .065 .065	.065 .065 .065	.109 .109 .109	.109 .109 .109
21/2	2	2.875	2.375	51/4	11/8	11/8	.083	.065	.120	.109
3	2 2½	3.500 3.500	2.375 2.875	51/4 51/4	1 1/8 1 1/8	1 1/8 1 1/8	.083 .083	.065 .083	.120 .120	.109 .120
4	2½ 3	4.500 4.500	2.875 3.500	51/4 51/4	1 1/8 1 1/8	11/8 11/8	.083 .083	.083 .083	.120 .120	.120 .120
6	4	6.625	4.500	9	31/2	11/4	.109	.083	.134	.120

For Speedline Belled End Fittings-see page 39.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE

fittings can be supplied beveled in accordance with MSS SP-43.

Weights of fittings are shown on page 108. Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manu-

Sch. 40S on application.

facturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

CAP

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

Pipe Size I.P.S.	0.D. D	Length E	Tangent (approximate) S	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	1/2	1/4	.065	.083
3/4	1.050	3/4	1/2	.065	.083
1	1.315 7/8		1/2	.065	.109
11/4	1.660	11/16	5/8	.065	.109
11/2	1.900	11/4	5/8	.065	.109
2	2.375	17/16	3/4	.065	.109
21/2	2.875	1 3/4	7/8	.083	.120
3	3.500	2	1	.083	.120
4	4.500	2%6	11/4	.083	.120
6	6.625	3 1/2	1 5/8	.109	.134

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

Weights of fittings are shown on page 108.
6" Caps in Schedule 5 and all SPEEDLINE Schedule 10 Caps are beveled in accordance with MSS SP-43.

Wall thickness will not be less than $87 \slash\! / \!\! 2\%$ of nominal pipe wall in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Tangential Design

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled End Fittings—see page 39.

Tangential design makes butt welding easier or flanging and other connecting methods possible. Speedline's extra length adds unrestricted assembly versatility to every fitting.

Pipe Size	0.0	O.D. Center to		Sch 5S	Sch 10S
I.P.S.	D.D.	A	В	Wall T	Wall T
1	1.315	6	13/4	.065	.109
11/4	1.660	6 3/4	13/4	.065	.109
11/2	1.900	7 1/4	2	.065	.109
2	2.375	8 1/2	21/2	.065	.109
2 1/2	2.875	10	21/2	.083	.120
3	3.500	11	3	.083	.120
4	4.500	121/2	3	.083	.120
6	6.625	15	3 1/2	.109	.134

Reducing outlet laterals also available on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

Nondestructive testing of shop welds on 45° Laterals is limited to dye penetrant examination. Wall thickness of run adjacent to outlet weld may be slightly less than MSS SP-43 requirements.

Weights of fittings are shown on page 108.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

TRUE Y **Tangential Design**

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

For Speedline Belled	End
Fittings—see page	39.

Butt weld, socket weld; use T/D Insert Flanges or Speedline Unions. **Tangential design** provides the versatility that can simplify and speed process piping assembly.

Pipe Size I.P.S.	0.D. D	Radius R	Tangent L	Center to End A	Center to End (side outlet) C (nearest 1/16")	Sch 5S Wall T	Sch 10S Wall T
1	1.315	11/2	13/8	21/8	21/4	.065	.109
11/4	1.660	1 1/8	11/4	31/8	23/8	.065	.109
11/2	1.900	21/4	11/4	31/2	2%16	.065	.109
2	2.375	3	11/4	41/4	3	.065	.109
21/2	2.875	3¾	11/4	5	37/16	.083	.120
3	3.500	41/2	2	61/2	33/16	.083	.120
4	4.500	6	21/4	81/4	31/4	.083	.120
6	6.625	9	21/4	111/4	41/8	.109	.134

Reducing Side Outlet Y Fittings also available on application.

Sch. 40S on application.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

ANSI B36.19.

ANI SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Nondestructive testing of shop welds on True Y fittings is limited to dye penetrant examination. Wall thickness will not be less than 871/2% of nominal pipe wall in accordance with MSS SP-43.

Weights of fittings are shown on page 108.

SPEEDLINE fittings are supplied with ends cut square to maintain installation versatility features as described on pages 2 to 6. When required, SPEEDLINE fittings can be supplied beveled in accordance with MSS SP-43.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

Speedline TYPE C STUB ENDS ARE QUALITY ENGINEERED TO MEET EXACTING PROCESS PIPING STANDARDS

Speedline Stub Ends Meet High Quality Standards

Ordinary Stub Ends
Often Lack Important Advantages

Speedline TYPE C STUB ENDS ARE THE ECONOMICAL ALTERNATE FOR THE MORE EXPENSIVE TYPE A AND B DESIGNS

	Speedline Type C	Туре А	Type B	
Inside Corner	Radius (Max.)	Square	Square	
Lap Radius	1/2"-1/2" thru 4" sizes 1/6"-5" thru 6" sizes	MSS or ANSI (ASA) Std. Radius	Square (⅓₂″ Max. Radius)	
Flange Required	Back-Up or Slip-On	Lap Joint	Back-Up or Slip-On	
Lap Face	Smooth	Serrated	Serrated	
Cutaway Views Illustrate Design Differences	[Speed			

Speedline TYPE C STUB ENDS COMBINE QUALITY, ECONOMY AND ADVANCED DESIGN FEATURES

- SPEEDLINE Type C Stub Ends were developed to provide a more economical stub end than either MSS Types A and B or ANSI for light wall process lines.
- Rigid standards have been established by SPEEDLINE to produce a quality stub end very closely approaching in performance the more expensive MSS Types A and B.
- None of the standardization sources such as MSS and ASA (now ANSI) has published standards covering Type C Stub Ends but SPEEDLINE has established its own exacting quality standards.

MSS—Manufacturers Standardization Society ASA—American Standards Association ANSI—American National Standards Institute

 SPEEDLINE Type C Stub Ends cost much less but incorporate many of the Type B features. In most cases a machined lap face is not required for low pressure applications.

- SPEEDLINE Stub Ends are cold formed from pipe that is made to rigid SPEEDLINE specifications.
- Specially designed SPEEDLINE forming equipment ensures quality stub ends with minimum inside corner radius and carefully controlled lap thickness.
- Every SPEEDLINE Type C Stub End is annealed and pickled to assure full corrosion resistance.
- Smooth finish, free of surface imperfections, is easy to polish when high lustre is required for appearance.
- All SPEEDLINE Schedule 10 and 40 Stub Ends are beveled to facilitate welding in accordance with MSS SP43. SPEEDLINE bevels all wall thicknesses over .083" even though standard specifications do not require beveling under .125" wall.
- SPEEDLINE Type C Stub Ends can be furnished with belled end for socket joining to pipe. (Back-up flange included).

TYPE C STUB ENDS

STAINLESS STEELS Types 304L, 316L, Alloy 20Cb-3 NICKEL 200, MONEL 400

Other alloys on application.

		n
	1	
Long	length Stub availa applic	Ends ble on cation.

See page	33	for	Back-L	Jp	Flanges
----------	----	-----	--------	----	---------

			LENG	THS*			
Pipe Size I.P.S.	0.D. D	Lap O.D. G	Standard Produc- tion (MSS Length) F	On Appli- cation (ASA Length) F	Min. Wall T ₂	Sch. 5S Wall T ₁	Sch. 10S Wall Tı
1/2	.840	13/8	2	3	_	.065	.083
3/4	1.050	111/16	2	3	Wall)	.065	.083
1	1.315	2	2	4	0.755	.065	.109
11/4	1.660	21/2	2	4	(Nominal	.065	.109
11/2	1.900	21/8	2	4	Nor	.065	.109
2	2.375	35/8	21/2	6	1	.065	.109
21/2	2.875	41/8	21/2	6	of	.083	.120
3	3.500	5	21/2	6	%	.083	.120
4	4.500	63/16	3	6	871/2	.083	.120
6	6.625	81/2	31/2	8	ω	.109	.134

*Lengths to 9'' or any intermediate length in one piece. Longer lengths can be furnished with machine welded additions. Lengths to 16'' can be annealed and pickled after welding.

All dimensions are in inches. See page 105 for dimensional tolerances.

Pipe schedules 5S, 10S, 40S, are in accordance with ANSI B36.19.

Weights of fittings are shown on page 108.
6" Stub Ends in Sch. 5 and all SPEEDLINE Sch. 10. Stub
Ends are beveled in accordance with MSS SP-43.

Wall thickness will not be less than $87 \slash\! / \! 2\%$ of nominal pipe wall in accordance with MSS SP-43.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

Stainless Steel fittings are supplied fully annealed and pickled. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

THE Speedline ALIGNING CONNECTOR

SPEEDS ALIGNMENT, ALSO MAKE-UP OF WELDED, BRAZED OR SOLDERED CONNECTION OF PIPE AND FITTINGS

Making a welded joint using a TIG torch without filler metal.

Making a welded joint using a covered electrode.

Making a brazed joint using an oxy-acetylene torch and a silver brazing alloy.

There will be no pipe misalignment or "icicles" at joints with Speedline Aligning Connectors. This inexpensive connector fits over the pipe and *Speedline Fittings*, to permit speedy welding, brazing or soldering of tight, leakproof, socket type joints. In-place pre-assembly and positive alignment *prior* to welding or brazing, reduces installation time and costs for the most complicated process piping systems.

Speedline Aligning Connectors also make it easy to tie in low cost, light wall Schedules 5 or 10 pipe and Speedline Fittings with existing heavy wall lines. The extra straight section on every end of every Speedline corrosion-resistant fitting allows for direct assembly of Aligning Connectors to any or all ends of the fittings.

The Speedline Aligning Connector adds socket connecting advantages to any *Speedline Fitting without* sacrificing the versatility of tangential design. One or more ends of a *Speedline Fitting* can be socket joined (with Aligning Connector) while other ends may be flanged, butt welded, connected with unions or stub ends.

When only socket welds are specified for all process piping, consider Speedline Belled End Fittings. See Page 39 for details.

ASSEMBLY ADVANTAGES:

- No end preparation
- Minimum alignment time
- Gas purge can be eliminated
- Filler metal not needed
- Less welding skill required
- In-place pre-assembly expedites welding

Simplifies joining of light wall pipe to heavy wall threaded pipe for connecting to screwed valves or other components.

ALIGNING CONNECTOR

STAINLESS STEELS

Types: 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

PIPE SIZE I.P.S.	INSIDE DIA. (Nominal) I.D.	LENGTH L	WALL*
1/2	.840	11/8	.083
3/4	1.050	11/8	.083
1	1.315	11/4	.109
11/4	1.660	1 1/4	.109
11/2	1.900	13/8	.109
2	2.375	13/8	.109
21/2	2.875	15/8	.120
3	3.500	13/4	.120
4	4.500	13/4	.120
6	6.625	2	.134

* Standard stocks to be used with Sch. 5 or 10 piping. Sch. 40S on application.

All dimensions are in inches.

Nominal I.D. dimensions are in accordance with ANSI 836.19 O.D. dimensions for pipe.

Weights of fittings are shown on page 108.

Wall thickness will not be less than 871/2% of nominal

wall thickness will not be less than 87/2% of nominal pipe wall.

Stainless Steel Aligning Connectors are fabricated from annealed and pickled material. Other metals are heat treated as required by accepted practice and are adequately cleaned to insure maximum corrosion resistance.

All SPEEDLINE fittings are permanently marked by electro-chemical etch that includes SPEEDLINE trademark, type of metal, pipe size, schedule and manufacturing code in accordance with MSS SP-43 and ANSI B16.9.

THE Speedline UNION

Assemble on pipe or SPEEDLINE Fittings by expanding method.

SPEEDLINE design eliminates the leaking frequently encountered with corrosion-resistant ground joint screwed unions.

Three designs are available:

Type PE provides ferrules that are serrated on the I.D. so that pipe or SPEEDLINE Fittings may be expanded or rolled-in, similar to the SPEEDLINE T/D Insert Flange described on page 29.

Type PW (Welding) features a design that can be socket welded or silver brazed.

Type PBW is designed for butt-welding to pipe or fittings. Ferrules are sized to match the pipe schedule at the weld end and are long enough for ease in welding.

All designs feature a concentric grooved gasket face on both ferrules. Gaskets may be ordered with unions, as a separate item.

SPEEDLINE Unions are bimetallic (stainless steel ferrules with cadmium-plated carbon steel nut). This eliminates the galling and seizing problems often experienced with threaded joints in stainless steels and other corrosion-resistant metals.

Standard production SPEEDLINE Unions have ferrules of Type 316 Stainless Steel. Ferrules in other

Designed primarily for joining light wall pipe Schedules 5S and 10S

TYPE 316 STAINLESS STEEL FERRULES with CADMIUM-PLATED CARBON STEEL NUTS

(Ferrules and nuts in other metal types available on application)

Socket Weld or Butt Weld to Pipe or SPEEDLINE Fittings

corrosion-resistant metals can be supplied on application.

If cadmium-plated carbon steel nuts cannot be used because of the particular application or processing conditions, SPEEDLINE Unions can be specified with stainless steel or other corrosion-resistant metal nuts on special order.

DESIGN FEATURES

Bimetallic for easier disassembly.

Gasket seated to eliminate leakage problems.

A demountable joint designed specifically for light wall process piping.

Available in types for socket welding, for butt welding and for expanding.

Simplifies installation of pipe or SPEEDLINE Fittings.

Can be ordered with stainless steel or other corrosion-resistant metal nuts to suit service requirements.

TYPE PE UNION Available Type 316 1/2" through 11/2"

THE Speedline UNION ... EXPANDING TYPE

Designed for assembly by expanding or rolling in, same as Speedline T/D Insert Flange

PIPE SIZE	N	JT		FERRU	‡GASKET SIZE			
I.P.S.	Α	В	С	D.	F	G	THICKNESS	OD/ID
1/2	15/8	13/16	5/8	13/8	13/16	3/8	1/16	111/32 X 3/4
3/4	21/4	13/16	5/8	113/16	15/8	3/8	1/16	125/32 x 15/16
1	21/2	13/16	5/8	2 /10	17/8	3/8	1/16	21/32 x 13/16
11/4	3	13/16	5/8	2% ₁₆ 2 ¹⁵ / ₁₆	23/a	3/8	1/16	217/32 x 19/16
11/2	31/2	7/8	3/4	215/16	23/4	3/8	1/16	22% x 113/16

TYPE PW UNION Available Type 316 " through

THE Speedline UNION...SOCKET TYPE

For welding or silver brazing.

PIPE SIZE	1	NUT			‡GASKET SIZE					
I.P.S.	Α	В	С	D.	E.	F	G	Н	THICKNESS	OD/ID
1/2	15/8	13/16	5/8	13/8	3/4	13/16	3/8	1/2	1/16	111/32 x 3/4
3/4	21/4	13/16	5/8	113/16	15/16	15/8	3/8	1/2	1/16	125/32 x 15/1
1	21/2	13/16	3/4	2 /10	13/16	17/8	3/8	5/8	1/16	21/32 x 13/16
11/4	3	13/16	3/4	2%6	19/16	23/8	3/8	5/8	1/16	217/32 x 19/16
11/2	3	7/8	3/4	211/16	13/4	21/2	3/8	5/8	1/16	221/32 x 113/
2	31/2	7/8	3/4	215/16	21/4	23/4	3/8	5/8	1/16	229/32 x 21/4
21/2	4	11/16	7/8	31/2	27/8	33/8	5/8	3/4	1/16	317/32 x 211/
3	43/4	11/16	7/8	4	31/2	33/4	5/8	3/4	1/16	41/32 x 35/1
4	51/2	13/16	1	5	41/2	43/4	3/4	7/8	1/16	51/32 × 47/1

PBW UNION Available Type 316 " through 4" I.P.S.

THE Speedline UNION ... BUTT WELD TYPE

(3)		1) UT			FE	FERRULES (1) (2)						‡ GASKETS			
I.P.S.	Α	В	(4) O.D. O	SCH. 5	(4) SCH. 10 T	(4) SCH. 40 T	С	D.	F	G	O.D.	SCH. 5	I.D. SCH. 10	SCH. 40	
1/2	15/8	13/16	.840	.065	.083	.109	11/4	13/8	13/16	3/8	111/32	23/32	11/16	5/8	
3/4	21/4	13/16	1.050	.065	.083	.113	11/4	113/16	15/8	3/8	125/32	29/32	7/8	13/16	
1	21/2	13/16	1.315	.065	.109	.133	11/4	2	17/8	3/8	21/32	13/16	13/32	11/16	
11/4	3	13/16	1.660	.065	.109	.140	11/4	29/16	23/8	3/8	217/32	117/32	17/16	13/8	
11/2	3	7/8	1.900	.065	.109	.145	11/4	211/16	21/2	3/8	221/32	125/32	111/16	15/8	
2	31/2	7/8	2.375	.065	.109	.154	11/4	215/16	23/4	3/8	229/32	21/4	25/32	21/16	
21/2	4	11/16	2.875	.083	.120	.203	11/2	31/2	33/8	5/8	317/32	223/32	25/8	215/32	
3	43/4	11/16	3.500	.083	.120	.216	11/2	4	33/4	5/8	41/32	311/32	31/4	31/16	
4	51/2	13/16	4.500	.083	.120	.237	15/8	5	43/4	3/4	51/32	411/32	41/4	41/32	

Nuts and ferrules are interchangeable with same size PW union. Ferrules extend approx. ¾" beyond nut. Orders must specify size and schedule. Wall .083 and under . . . weld ends are plain. Over .083 wall . . . weld ends have standard 37½° bevel.

[‡]May be ordered in Teflon or Neoprene. Other gasket materials available on application.
*Nearest 1/16".

Fewer welds can mean savings in time and costs...

Five welds and the cost of stub ends could have been eliminated in the piping installation shown at left below . . . if Speedline Fittings and T/D Insert Flanges had been used instead of ordinary welding fittings and flanges. Compare the installation on the right. Note how the extra straight section — a feature common to all Speedline Fittings — provides ample clearance for adding flanges where needed. And, you can attach the Speedline T/D Insert Flange to pipe or fittings with a simple expanding operation . . . no clamps are needed. Exclusive Taper Design cuts installation time and costs, too, because flanges can be rotated to align bolt holes.

THE Speedline T/D* INSERT FLANGE

A PATENTED DESIGN THAT REDUCES FLANGE ASSEMBLY COSTS

A Speedline T/D Insert Flange consists of a stainless steel (or other corrosion resistant metal) insert in a carbon steel flange. It was developed to provide a less expensive method for flanging corrosion resistant pipe and Speedline Fittings.

Flanges may be expanded or welded to any or all ends of pipe and Speedline Fittings as required. Assembly is easier and less costly because the need for special tools is minimized and bolt hole alignment is never a problem.

Taper Design Insert Flanges offer significant cost-saving differences particularly when compared with welding neck, slip-on flanges or stub ends and back-up flanges.

Standard ASA thickness and drilling.

-Meets specification requirements.

No bolt hole alignment difficulties.

-Flange can be rotated.

Patented T/D (Taper Design) feature speeds assembly.

-No need for special clamps when expanding.

Taper Design assures full support for insert during expanding.

—To insure metal flow of pipe or fitting into the insert serrations.

Speedline pipe expander is only special tool needed.

—Good expanding technique can be quickly acquired.

Solves assembly problems in hazardous areas.

-No welder or welding equipment needed.

Expanded joints can speed pipeline maintenance

—T/D Insert Flanges simplify hook up to existing piping or fittings in the field.

Designed for maximum unit gasket loading.

—Concentrated force and concentric growed insert face insures leakproof performance.

T/D Insert Flanges provide a demountable joint that requires no special pipe or fitting end preparation.

—Beveling, grooving, flaring, threading can be eliminated.

Square shoulder at face of insert.

—No drift back and leakers in cyclical temperature service.

Can also be used as welding flange.

—Rotatability is not affected even if welded front and back.

Pipe cutting to exact length is uncomplicated.

—Make allowance only for gasket thickness.

*TAPER DESIGN/TM U.S. Patent No. 3,284,112.

Installed cost is less than stub end and backup flange.

-With equal bolt-hole alignment advantage.

Corrosion resistant metal is used for insert only.

—A design feature that contributes to lower installed costs.

Any type of metal can be specified for the insert.

—Choose from Stainless Steels, Monel, Nickel and other corrosion resistant alloys. Inserts machined from spuncast, hollow bar, forgings or bar stock at manufacturer's option, unless otherwise specified.

Speedline Fittings may be ordered with T/D Insert Flanges expanded on ends as specified.

-Or welded to any or all ends of fittings or pipe.

PRESSURE TEMPERATURE RATINGS SPEEDLINE T/D INSERT FLANGES (150# with stainless steel inserts)

Ratings are maximum allowable non-shock pressures

Service Temperature Deg. F	Allowable Pressure p.s.i.g.
-20° to 100°	275
150°	255
200°	240
250°	225
300°	210
350°	195
400°	180
450°	165
500°	150

- (1) Ratings may be interpolated between temperatures shown.
- (2) The temperature is that on the inside of the pressure retaining structure.

USE Speedline T/D_® INSERT FLANGES TO SPEED ASSEMBLY AND TO REDUCE FLANGING COSTS

Speedline T/D Insert Flanges can be quickly assembled, as required, on any Speedline Fitting or length of pipe.

A matching taper on both flange and insert provides positive mechanical strength during assembly and in service.

A simple expanding operation will secure the Speedline T/D Flange to any or all ends of Speedline Tangential fittings or length of pipe.

To align bolt holes, simply rotate the flange until it matches drilling of the mating flange or component.

Speedline T/D Insert Flanges may also be welded to pipe or fittings without sacrificing rotatability or efficiency.

Taper Design increases bolt tightening compressive forces to insure structurally sound and leak-proof joints.

When expanding or welding is completed, a few taps with a mallet will free flange for quick bolt hole alignment.

Flange one end or all ends. T/D Insert Flanges provide design freedom and many cost-saving assembly advantages.

T/D_® INSERT FLANGE

(Taper Design)

CORROSION RESISTANT METAL INSERT IN A FORGED CARBON STEEL FLANGE

INSERT METALS: STAINLESS STEEL Type 316, Alloy 20

NICKEL 200, MONEL 400 Other alloys on application.

T/D® INSERT FLANGE - 150# STD

Pipe Size I.P.S.	Flange Dia. O	Flange Thickness Q	Bolt Circle Dia.	No. & Bolt Hole	Gasket Face Dia. Nearest ⅓6"	Raised Face Thickness	Length of Insert	Bolt Data	- 3	‡Gasket Size	
1.1 .0.			BC	Dia.	R	RF	Y		Thickness	OD/ID	
1/2	31/2	½ 16	23/8	4 - 5/8	13/8	1/16	1/2	4 - ½ x 1¾	1/16	13/4 x 3/4	
3/4	37/8	1/2	23/4	4 - 5/8	15/8	1/16	21/32	4 - ½ x 2	1/16	21/8 x 1	
1	41/4	%16	31/8	4 - 5/8	115/16	1/16	21/32	4 - ½ x 2	1/16	21/2 x 11/4	
11/4	45/8	5/8	31/2	4 - 5/8	23/8	1/16	11/16	4 - 1/2 x 21/4	1/16	21/8 x 11/2	
11/2	5	11/16	37/8	4 - 5/8	211/16	1/16	3/4	4 - 1/2 x 21/4	1/16	31/4 x 13/4	
2	6	3/4	43/4	4 - 3/4	33/16	1/16	27/32	4 - 5/8 x 23/4	1/16	4 x 21/4	
21/2	7	7/8	51/2	4 - 3/4	33/4	1/16	15/16	4 - % x 3	1/16	43/4 x 23/4	
3	71/2	15/16	6	4 - 3/4	47/16	1/16	1	4 - 5/8 x 3	1/16	51/4 x 33/8	
4	9	15/16	71/2	8 - 3/4	51/2	1/16	11/8	8 - 5/8 x 3	1/16	63/4 x 43/8	
6	11	1	91/2	8 - 7/8	73/4	3/32	11/8	8 - 3/4 x 31/4	1/16	85% x 63%	
8	131/2	11/8	113/4	8 - 1/8	10	1/8	13/8	8 - 3/4 x 31/4	1/16	10% x 8%	
10	16	13/16	141/4	12 - 1	121/4	1/8	13/8	12 - 7/8 x 31/2	1/16	131/4 x 101/2	

‡May be ordered in Teflon or Neoprene. Other materials on application.

Blind T/D Insert Flange also available to same dimensions, except no bore.

Reducing Insert Flanges. See page 32. Forged Steel Back-up Flange. See page 33.

All dimensions are in inches.

Flange O.D., thickness and drilling conform to specification ANSI B16.5.

Gasket face has machined concentric V grooves.

Forged carbon steel flange specification ASTM A181 Grade II or A105.

Flange weights are listed on Page 108.

Sizes $8^{\prime\prime}$ and $10^{\prime\prime}$ are recommended for welded assembly only.

Test data shown on Page 106.

T/D® REDUCING INSERT FLANGE

CORROSION RESISTANT METAL INSERT IN A FORGED CARBON STEEL FLANGE

INSERT METALS: STAINLESS STEEL Type 316, Alloy 20

NICKEL 200, MONEL 400

Other alloys on application.

T/D Insert Flange 150# Std.

T/D Reducing Insert Flange 150 # Std.

T/D Reducing Insert Flanges have all the dimensional characteristics of a T/D Insert Flange, except that insert has smaller bore to accommodate reduction in size of pipe—as shown in drawings and pictures above.

Reducing flanges can be specified when a demountable connection is required in conjunction with a reduction in size of pipeline. If an abrupt change in pipe size is objectionable, consider use of Speedline Concentric or Eccentric Reducers.

To permit the flange on the smaller pipe size to be bolted to the standard flange on the larger pipe size (or on other piping components) the reducing flange must have dimensions identical to those of the standard flange, except for the smaller bore, as illustrated at left.

The Speedline T/D Reducing Insert Flange design incorporates all the advantages of the regular T/D Insert Flange detailed on preceding pages. Taper Design assures ease of installation by eliminating alignment problems.

When ordering Speedline T/D Reducing Insert Flanges, specify the two pipe sizes being joined, giving the larger size first.

Example:

 $3^{\prime\prime}$ x $11\!\!/\!\!2^{\prime\prime}$ 150# T/D Reducing Insert Flange Type 316 S.S.

This indicates that flange is going to be used on 11/2" size pipe but will be bolted to a 3" 150# flange.

Another ordering method is to specify the smaller pipe size and the outside diameter of the flange required for the larger pipe size.

Example cited above would then read:

 $1\frac{1}{2}$ " x $7\frac{1}{2}$ " O.D. 150# T/D Reducing Insert Flange Type 316 S.S.

Reference to chart below will show that 7½" is the O.D. for a 3" 150# flange—to which the reducing flange will be bolted.

Flange Diameters

(Inches)

Pipe Size I.P.S.	3/4	1	11/4	11/2	2	21/2	3	4	6	8.	10
150#	37/8	41/4	45/8	5	6	7	71/2	9	11	131/2	16
300#	45/8	47/8	51/4	61/8	61/2	71/2	81/4	10	121/2	15	171/2

All dimensions are in inches.

Flange O.D., thickness and drilling conform to specification ANSI B16.5.

Gasket face has machined concentric V grooves.

Forged carbon steel flange specification ASTM A181 Grade II or A105.

Flange weights are listed on Page-108.

TAPER DESIGN/TM U.S. Patent No. 3,284,112.

Sizes 8" and 10" are recommended for welded assembly only.

Test data shown on Page 106.

BACK-UP FLANGE Forged Carbon Steel

These flanges are for use with SPEEDLINE Stub Ends and are made to ANSI dimensions.

Standard 150# Drilling-Flat Face

Dimensions are in inches.
Flanges to 300# design available on application.

Forged carbon steel flange specification
ASTM A181 Grade II or A105.

Pipe Size I.P.S.	Flange Dia. O	Flange Thickness Q	Bolt Circle Dia. BC	No. & Bolt Hole Dia. C	
1/2	31/2	% 16	23/8	4—5/8	
3/4	37/8	1/2	23/4	4—5/8	
1	41/4	%6	31/8	4—5/8	
11/4	45/8	5/8	31/2	4—5/8 4—5/8	
11/2	5	11/16	31/8		
2	6	3/4	43/4	4-3/4	
21/2	7	7∕8	51/2	4-3/4	
3	71/2	15/16	6	4—3/4	
4	9	15/16	71/2	8—3/4	
6	11	1	91/2	8—7/8	

SPEEDLINE back-up flanges can be used with SPEEDLINE Type C or MSS Type B Stub Ends.

Savings are measurable with longer length Speedline Fittings.

THE EXTRA LENGTH FEATURE OF SPEEDLINE FITTINGS
ADDS COST-SAVING VERSATILITY TO PROCESS PIPING INSTALLATIONS

Speedline ROL-TITE EXPANDER Designed for Parallel Expanding

Speeds Assembly of Pipe or SPEEDLINE Fittings and T/D Insert Flanges

ROL-TITE DESIGN FEATURES

Rolls and mandrels have matching tapers, a feature that makes parallel rolling or expanding possible. The full working surface of the rollers is employed during the entire expanding operation to insure uniform seating of metal in all serrations, front to back of the insert.

MADE BETTER TO LAST LONGER

Speedline RoI-Tite expanders are manufactured with care and skill to insure trouble-free performance on the job. All steel parts are heat treated to increase service life. Mandrels and rolls are hardened tool steel. The cage assembly and rotating thrust collar are alloy steel.

WHEN ORDERING SPECIFY

ROL-TITE

PIPE SIZE

PIPE SCHEDULE

Rol-Tite expanders have been designed for easy changeover from one schedule to another in a given pipe size.

Mandrel supplied with expander is for schedule specified. At the same time or at a later date, additional mandrels may be purchased separately.

INTERCHANGEABILITY DATA

Pipe sizes 1/2" 3/4" 1" 11/4" 11/2"

Rol-Tite expanders up to and including 1½" size can be used for Schedules 5 or 10 . . . the only thing needed to make change from one schedule to another is the proper mandrel.

Schedule 5 or Schedule 10 mandrels may be purchased separately.

Schedule 40 in these sizes requires a Schedule 40 expander.

Pipe sizes 2" 21/2" 3" 4"

Rol-Tite expanders for 2" size and over can be used for Schedules 5, 10 or 40... the only thing needed to make change from one schedule to another is the proper mandrel. Mandrels for any of the three schedules may be purchased separately.

Stop collars for each size are interchangeable for all three schedules. All parts are permanently marked for quick identification. Sizes over 4" IPS available on application.

Gain these advantages with Rol-Tite expanders

- Engineered to produce uniform expansion, front to back of serrated insert.
- Parallel rolling promotes flow of metal into all serrations.
- Flow of metal into all serrations assures a structurally sound, leak tight joint.
- Specially designed short mandrel provides adequate clearance for expanding Speedline bends and tees.
- Simplified expanding procedure does not utilize torque data or torque wrenches and requires no special mechanical skills.

- Proper expansion is based on the amount of mandrel travel and is controlled by the stop collar.
- Results in a smooth, burnished I.D. finish in area of expansion. Eliminates need for additional rolling often required to smooth troublesome ridges caused by some expander designs.
- All wear parts are heat treated tool steel or alloy steel to increase service life.
- Replacement cage assemblies, mandrels, stop collars and roller sets are readily available.

The procedure detailed here utilizes proven engineering data on the metal flow that takes place during the expansion of the pipe or Speedline Fitting into the insert serrations.

Previous Speedline data on expanding was based on torque values, as compared with this approach which is based on penetration of metal into the serrations by controlled mandrel travel.

This new procedure simplifies expanding because it compensates for variables such as hardness of different metals, dimensional tolerances, operator's skill, etc., resulting in consistently sound joints.

The four-step procedure outlined below eliminates need for expensive special equipment and makes it a simple matter for anyone in the assembly crew to make expansions with confidence.

SIMPLIFIED 4 STEP PROCEDURE

Good expanding results, as with nearly all mechanical accomplishments, begin with careful preparation and good shop or field practices. Cleanliness of pipe and fittings plus tool care, maintenance and lubrication of expander before and during procedure will contribute much to ease of operation and the results obtained.

Speedline Fittings do not require any special end preparation prior to expanding into the flange.

It is always good practice to carefully inspect pipe to be used on the job. Make sure it is the correct size, schedule, analysis and free of any surface damage or excessive O.D. or I.D. weld bead.

If removal of any of the weld bead is indicated, this can be accomplished by manually grinding. Grind flush, conforming to curvature of pipe.

Before starting each expanding job select Rol-Tite expander of proper pipe size and be sure it is fitted with proper size mandrel for the wall thickness being used (Schedule 5, 10 or 40).

EXPANDER PARTS

Shoulder on face of thrust collar.

To insure long tool life and to expedite operation keep expander clean and free of dirt, grit or abrasive matter at all times. Expander should be kept well lubricated during use to insure maximum efficiency.

STEP #1

Cut Pipe Square Deburr

Clean pipe and fitting ends

Secure pipe or fitting in vise

Position units for expanding flush with insert face.

> Slide expander cage forward.

Insert expander.

Shoulder fits into I.D. of insert.

Thrust collar face tight against gasket face.

A good expansion begins with square cut pipe that has been deburred and cleaned.

End of pipe or fitting to be expanded and the insert serrations should be wiped with a commercial solvent or degreaser to assure removal of any foreign matter.

An ordinary bench vise may be used to hold T/D Insert Flange in an upright position, with gasket face of insert facing operator. (Fig. #1)

If preferred, a pipe vise may be used to hold length of pipe or fitting.

Pipe or fitting initially should be positioned with end flush with insert face. (Fig. #2)

STEP #2

Slide cage assembly all the way forward on the mandrel. (Fig. #3)

Insert expander (Fig. #4) until shoulder on face of thrust collar slips into I.D. of insert and face of thrust collar is tight against gasket face to insert. (Fig. #5)

Shoulder on face of thrust collar will move pipe or fitting that is to be expanded back from face of insert about 1/32". (Fig. #5)

Fig. 2

Fig. 3

Fig. 4

Maintain Step #2 cage position.

Turn mandrel clockwise till snug tight. (No wobble with expander removed.)

If there is wobble repeat procedure.

Do not over expand.

Check positioning of units.

Re-insert expander and turn till snug tight.

Loosen thumbscrew. Turn stop collar until it contacts thrust collar.

> Back off stop collar 5 turns. Locate keyway and tighten thumbscrew.

Turn clockwise until stop collar contacts thrust collar.

Turn additional six revolutions.

Check expanded area visually.

STEP #3

Maintain cage position illustrated (Fig. 5) and turn mandrel clockwise. Mandrel will move forward automatically, as rollers engage pipe or fitting.

Continue turning mandrel until snug tight condition occurs. Withdraw expander by turning mandrel counter-clockwise.

Snug tight means metal to metal contact between pipe (or fitting) and I.D. of insert, with just enough additional turning of mandrel, so that, with expander withdrawn, there is no manually detectable wobble between the insert and pipe.

If wobble is detected, re-insert expander and repeat above procedure. After again reaching metal to metal contact, increase the number of additional turns used previously. Withdraw expander and re-check for snug tight.

It is important not to over expand at this point. After initial expansions are made the operator will acquire the proper "feel" so that <u>snug tight</u> condition can be attained quickly, usually after the first or second attempt.

Some operators prefer a short wrench (e.g. 8" open end for 2" size) to make it easier to gauge when the snug tight condition occurs.

It is also important to maintain cage position during this step to prevent pipe or fitting that is being expanded from moving beyond the insert face; neither should they be recessed more than provided for by the thrust collar shoulder. Adjust if necessary by tapping flange or pipe or fitting.

Fig. 5

STEP #4

Re-insert expander, then turn mandrel clockwise until "feel" is the same as it was when snug tight was reached previously.

Loosen thumbscrew and turn stop collar clockwise until it firmly contacts back of thrust collar, as shown by dotted lines in Fig. #6.

Using thumbscrew position as a guide, back off stop collar by turning it counter-clockwise 5 turns. Continue turning stop collar until thumbscrew lines up with keyway, then tighten. This will result in a fraction of a turn more than the required 5 turns.

Stop collar is now in position shown by solid lines in Fig. #6. E designation illustrates distance from back of thrust collar.

Using proper size wrench for pipe size being expanded, turn mandrel clockwise until stop collar contacts back of thrust collar. Additional lubrication prior to contact is helpful.

Again, using thumbscrew as a guide, turn mandrel six complete revolutions to smooth expanded area. This completes the expansion.

Remove expander by turning counter-clockwise. Clean lubricant from I.D. of expanded joint and examine visually. Expanded area should be uniformly smooth with a bright burnished finish completely around I.D. with a slightly detectable enlargement of the I.D. ending just beyond the thickness of the insert.

To align bolt holes, simply loosen carbon steel flange from insert by tapping with a soft faced hammer at several points until flange loosens and can be rotated to proper bolt-up position.

Fig. 6

For Assembly of Speedline Fittings and T/D Insert Flanges

Tapered expanding results from the mandrel being tapered and the rollers having parallel sides.

This economical type expander has been used since the Tangential Design concept was first introduced.

While it does not have many of the advantages now available in the newer, more versatile Speedline Rol-Tite Expander, it is still preferred by many satisfied customers.

The design provides ample clearance between the end of the mandrel and the inside of any Speedline Fitting on which Speedline T/D Insert Flanges or Type PE Unions are being expanded.

The only other tools required for expanding are a bench vise or pipe vise and ordinary wrenches of open end, box end, adjustable or socket and ratchet types.

A separate expander is required for each pipe size and for each pipe schedule (wall thickness) except that the 6" size will do both Schedules 5 and 10 with the same mandrel (6" Schedule 40 requires a separate tool).

STANDARD EXPANDER STOCKS

Pipe sizes available 1/2" 3/4" 1" 11/4" 11/2" 2" 21/2" 3" 4" 6" Pipe schedules available Schedule 5 Schedule 10 Schedule 40

WHEN ORDERING SPECIFY

- STANDARD EXPANDER
- PIPE SIZE PIPE SCHEDULE

Replacement mandrels, cages, and sets of rollers are available. Schedule 80 Expanders available on special order.

NOTE: Use of this standard expander requires a higher degree of skill than the Rol-Tite expander to attain the proper technique that insures leak-tight joints. Our previous experience has established that the use of torque data is of little significance in obtaining a good expansion because of variables such as hardness of different metals, dimensional tolerances, operator's skill, etc. Development of technique, feel, visual examination and testing offer better determining guides.

Cut pipe square and deburr.

Remove any excessive O.D. or I.D. weld bead on pipe by grinding, being careful to conform to curvature of pipe.

Clean O.D. and I.D. of pipe or Speedline Fitting and insert serrations.

Expander must be kept clean, free from dirt, grit or abrasive matter and be well lubricated during use.

- 2. Hold flange in bench vise and put pipe or fitting into insert. Or hold pipe or fitting in pipe vise and slip flange over end.
- 3. Position pipe or fitting so that end is recessed about 1/32" from gasket face (recheck during step #4).
- 4. Slide cage to extreme small end of mandrel. Insert cage into the pipe or fitting, just past rounded end of the rollers. Hold cage in this position and push mandrel in, hand tight. Using wrench, turn mandrel clockwise (as operator faces flange) until the front end of the rollers has travelled to the back of the insert.
- 5. It may be necessary to repeat step #4 several times to complete expansion.
- 6. On the last step #4 turn mandrel back and forth several times through about 34 of a revolution to "iron out" the expanded area.
- 7. Clean lubrication from I.D. of expanded area and examine visually. Expanded area should have a bright burnished finish extending just beyond thickness of insert. Feel I.D. at this point for a detectable change in I.D. The expanded area should be relatively free from longitudinal ridges caused by the leading roller. If not, repeat step #6.
- 8. Check to make sure pipe or fitting end does not protrude beyond gasket face of insert. If it does, carefully file flush without scoring insert face.
- 9. Bolt holes may be aligned by tapping carbon steel flange with soft faced hammer at several spots to loosen from insert. Rotate flange to proper bolt-up position.

BELLED END PIPE FITTINGS

Designed to expedite socket assembly of process piping.

STAINLESS STEELS

Types 304L, 316L, Alloy 20Cb-3

NICKEL 200, MONEL 400

Other alloys on application.

- EASY TO FIT-UP
- CAN BE WELDED
- CAN BE BRAZED OR SOLDERED
- REDUCE INSTALLATION COSTS

Easy fit-up and true alignment is assured with precision formed, dimensionally accurate Speedline Belled End Fittings. Square cut pipe readily fits into the carefully sized sockets to simplify welding or brazing joining procedures.

No matter which joining method is employed, Speedline accuracy does make the job easier and thus assembly costs can be held to an absolute minimum.

Speedline Belled End Fittings solve many of the problems frequently encountered during field assembly of process piping, especially with light wall material. Squareness of pipe ends and concentricity of pipe are not as critical as with other assembly methods. Belled End Fittings, however, can be used only for socket type connections.

For more fitting and assembly versatility refer to previous data pages for Speedline Tangential fittings that can be butt welded, flanged or socket connected.

SOCKET DETAILS

Common to all fittings except Reducers

Socket depth tolerance: $\pm \frac{1}{16}$ "

Socket details for reducers are listed on Eccentric and Concentric data pages.

BELLED END PIPE FITTINGS

90° ELBOW

Pipe Size I.P.S.	0.D. D	Radius R	Center to End A	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	11/2	25/16	.065	.083
3/4	1.050	11/8	2%6	.065	.083
1	1.315	11/2	213/16	.065	.109
11/4	1.660	1 1/8	31/16	.065	.109
11/2	1.900	21/4	37/16	.065	.109
2	2.375	3	43/16	.065	.109
21/2	2.875	3¾	415/16	.083	.120
3	3.500	41/2	67/16	.083	.120
4	4.500	6	83/16	.083	.120
6	6.625	9	113/16	.109	.134

45° ELBOW

Pipe Size I.P.S.	0.D. D	Radius R	Center to End B	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	11/2	17/16	.065	.083
3/4	1.050	11/8	17/8	.065	.083
1	1.315	11/2	115/16	.065	.109
11/4	1.660	1 1/8	115/16	.065	.109
11/2	1.900	21/4	21/8	.065	.109
2	2.375	3	27/16	.065	.109
21/2	2.875	3¾	23/4	.083	.120
3	3.500	41/2	313/16	.083	.120
4	4.500	6	411/16	.083	.120
6	6.625	9	515/16	.109	.134

180° RETURN BEND

See applicable	footnotes	pages 9	, 10, 11.
----------------	-----------	---------	-----------

Pipe Size I.P.S.	0.D. D	Center to Center O	Center to End A	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	3%	25/16	.065	.083
3/4	1.050	4	2%16	.065	.083
1	1.315	5	213/16	.065	.109
11/4	1.660	51/2	31/16	.065	.109
11/2	1.900	6	37/16	.065	.109
2	2.375	8	57/16	.065 •	.109
21/2	2.875	9	415/16	.083	.120
3	3.500	9	67/16	.083	.120
4	4.500	12	83/16	.083	.120
6	6.625	18	113/16	.109	.134

BELLED END PIPE FITTINGS

TEE

Pipe Size I.P.S.	0.D. D	Center to End C	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	25/16	.065	.083
3/4	1.050	2%6	.065	.083
1	1.315	213/16	.065	.109
11/4	1.660	31/16	.065	.109
11/2	1.900	37/16	.065	.109
2	2.375	43/16	.065	.109
21/2	2.875	415/16	.083	.120
3	3.500	415/16	.083	.120
4	4.500	511/16	.083	.120
6	6.625	713/16	.109	.134

Speedline Reducing Tee, page 42.

CROSS

Pipe Size I.P.S.	0.D. D	Center to End C	Sch 5S Wall T	Sch 10S Wall T
1/2	.840	25/16	.065	.083
3/4	1.050	2%16	.065	.083
1	1.315	213/16	.065	.109
11/4	1.660	31/16	.065	.109
11/2	1.900	37/16	.065	.109
2	2.375	43/16	.065	.109
21/2	2.875	415/16	.083	.120
3	3.500	415/16	.083	.120
4	4.500	511/16	.083	.120
6	6.625	713/16	.109	.134

Speedline Reducing Cross is also available.

ALIGNING CONNECTOR

NSIDE DIA. (Nominal) I.D.	LENGTH L	WALL*		
.840	11/8	.083		
1.050	11/8	.083		
1.315	11/4	.109		
1.660	11/4	1/4 .109		
1.900	13/8	.109		
2.375	13/8	.109		
2.875	15/8	.120		
3.500	13/4	.120		
4.500	13/4	13/4 .120		
6.625	2	.134		

^{*} Standard stocks to be used with Sch. 5 or 10 piping.

REDUCING TEE

BELLED END PIPE FITTINGS

Pipe Size I.P.S. 0.D. Run 0.1 0.D. 0utlet 0.1 Center to End C c to End C c Sch 5S Wall f. f. Sch 10S Wall f. Sch 10S Wall f.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1½ x 1½ x 1¼ 1.900 1.660 3¾6 .065 .065 .109 .109 2 x 2 x ½ 2.375 .840 4¾6 .065 .065 .109 .083 2 x 2 x ¾ 2.375 1.050 4¾6 .065 .065 .109 .083 2 x 2 x 1 2.375 1.315 4¾6 .065 .065 .109 .109 2 x 2 x 1¼ 2.375 1.660 4¾6 .065 .065 .109 .109 2 x 2 x 1½ 2.375 1.900 4¾6 .065 .065 .109 .109 2½ x 2½ x ½ 2.875 1.900 4¾6 .065 .065 .109 .109 2½ x 2½ x ½ ½ 2.875 1.050 4½6 .083 .065 .120 .083 2½ x 2½ x ½ ¾ 2.875 1.050 4½6 .083 .065 .120 .083 2½ x 2½ x 1¼ 2.875 1.315 4½6 .083 .065 .120 .10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2½ x 2½ x 2 2.875 2.375 4½6 .083 .065 .120 .109 3 x 3 x ½ 3.500 .840 4½6 .083 .065 .120 .083 3 x 3 x ¾ 3.500 1.050 4½6 .083 .065 .120 .083 3 x 3 x 1 3.500 1.315 4½6 .083 .065 .120 .109 3 x 3 x 1¼ 3.500 1.660 4½6 .083 .065 .120 .109 3 x 3 x 1½ 3.500 1.900 4½6 .083 .065 .120 .109
3 x 3 x ½ 3.500 .840 4½6 .083 .065 .120 .083 3 x 3 x ¾ 3.500 1.050 4½6 .083 .065 .120 .083 3 x 3 x 1 3.500 1.315 4½6 .083 .065 .120 .109 3 x 3 x 1¼ 3.500 1.660 4½6 .083 .065 .120 .109 3 x 3 x 1½ 3.500 1.900 4½6 .083 .065 .120 .109
3 x 3 x 3 x 3 x 3 x 3 x 3 x 1 3.500 1.050 415/16 .083 .065 .120 .083 3 x 3 x 1 3.500 1.315 415/16 .083 .065 .120 .109 3 x 3 x 11/4 3.500 1.660 415/16 .083 .065 .120 .109 3 x 3 x 11/2 3.500 1.900 415/16 .083 .065 .120 .109
3 x 3 x 1 3.500 1.315 41 $\frac{5}{16}$.083 .065 .120 .109 3 x 3 x 1 $\frac{1}{4}$ 3.500 1.660 41 $\frac{5}{16}$.083 .065 .120 .109 3 x 3 x 1 $\frac{1}{2}$ 3.500 1.900 41 $\frac{5}{16}$.083 .065 .120 .109 3 x 3 x 1 $\frac{1}{2}$ 3.500 1.900 41 $\frac{5}{16}$.083 .065 .120 .109
3 x 3 x 1½ 3.500 1.660 415/16 .083 .065 .120 .109 3 x 3 x 1½ 3.500 1.900 415/16 .083 .065 .120 .109
3 x 3 x 1½ 3.500 1.900 4½ 0.083 .065 .120 .109
716 1000 1120 1100
3 x3 x2 3.500 2.375 415/ ₂ 083 085 120 100
3 x 3 x 2½ 3.500 2.875 415/16 .083 .083 .120 .120
4 x 4 x ½ 4.500 .840 51½6 .083 .065 .120 .083
4 x 4 x 3/4 4.500 1.050 511/16 .083 .065 .120 .083
4 x 4 x 1 4.500 1.315 51½6 .083 .065 .120 .109
4 x 4 x 11/4 4.500 1.660 511/16 .083 .065 .120 .109
4 x 4 x 1½ 4.500 1.900 51½ 0.083 .065 .120 .109
4 x 4 x 2 4.500 2.375 51½6 .083 .065 .120 .109
4 x 4 x 2½ 4.500 2.875 5½6 .083 .083 .120 .120
4 x 4 x 3 4.500 3.500 51½6 .083 .083 .120 .120
6 x 6 x ½ 6.625 .840 71¾6 .109 .065 .134 .083
6 x 6 x 34 6.625 1.050 713/16 .109 .065 .134 .109
6 x 6 x 1 6.625 1.315 713/16 .109 .065 .134 .109
6 x 6 x 1¼ 6.625 1.660 7 ¹³ / ₁₆ .109 .065 .134 .109
6 x 6 x 1½ 6.625 1.900 71¾6 .109 .065 .134 .109
6 x 6 x 2 6.625 2.375 7 ¹³ / ₁₆ .109 .065 .134 .109
6 x 6 x 2½ 6.625 2.875 7 ¹³ / ₁₆ .109 .083 .134 .120
6 x 6 x 3 6.625 3.500 7 ¹³ / ₁₆ .109 .083 .134 .120
6 x 6 x 4 6.625 4.500 7 ¹ 3/ ₁₆ .109 .083 .134 .120

See applicable footnotes pages 14 and 15.

Speedline BELLED END

PIPE FITTINGS

See applicable footnotes pages 16, 17, 18.

CONCENTRIC REDUCER

Pipe Size I.P.S.	O.D. Large End D ₁	O.D. Small End D ₂	Length H	Socket Large End S,*	Depth Small End S ₂ *	Sch 5S Wall T ₁	Sch 5S Wall T ₂	Sch 10S Wall T ₁	Sch 10S Wall T ₂
3/4 X 1/2	1.050	.840	35/8	5/8	1/2	.065	.065	.083	.083
1 x ½	1.315	.840	35/8	5/8	1/2	.065	.065	.109	.083
1 x 3/4	1.315	1.050	35/8	5/8	5/8	.065	.065	.109	.083
11/4 x 3/4	1.660	1.050	35/8	5/8	5/8	.065	.065	.109	.083
11/4 x 1	1.660	1.315	35/8	5/8	5/8	.065	.065	.109	.109
1½ x ½	1.900	.840	35/8	5/8	1/2	.065	.065	.109	.083
1½ x ¾	1.900	1.050	35/8	5/8	5/8	.065	.065	.109	.083
1½ x 1	1.900	1.315	35/8	5/8	5/8	.065	.065	.109	.109
1½ x 1¼	1.900	1.660	35/8	5/8	5/8	.065	.065	.109	.109
2 x ½	2.375	.840	35/8	3/4	5/8	.065	.065	.109	.083
2 x 3/4	2.375	1.050	35/8	3/4	5/8	.065	.065	.109	.083
2 x 1	2.375	1.315	35/8	3/4	5/8	.065	.065	.109	.109
2 x 11/4	2.375	1.660	35/8	3/4	5/8	.065	.065	.109	.109
2 x 1½	2.375	1.900	35/8	3/4	5/8	.065	.065	.109	.109
2½ x 1	2.875	1.315	51/8	3/4	5/8	.083	.065	.120	.109
2½ x 1¼	2.875	1.660	51/8	3/4	5/8	.083	.065	.120	.109
2½ x 1½	2.875	1.900	51/8	3/4	3/4	.083	.065	.120	.109
2½ x 2	2.875	2.375	51/8	3/4	5/8	.083	.065	.120	.109
3 x 1	3.500	1.315	51/8	3/4	5/8	.083	.065	.120	.109
3 x 11/4	3.500	1.660	51/8	3/4	5/8	.083	.065	.120	.109
3 x 1½	3.500	1.900	51/8	3/4	5/8	.083	.065	.120	.109
3 x 2	3.500	2.375	51/8	3/4	3/4	.083	.065	.120	.109
3 x 2½	3.500	2.875	51/8	3/4	3/4	.083	.083	.120	.120
4 x 2	4.500	2.375	51/8	3/4	3/4	.083	.065	.120	.109
4 x 2½	4.500	2.875	51/8	3/4	3/4	.083	.083	.120	.120
4 x 3	4.500	3.500	51/8	3/4	3/4	.083	.083	.120	.120
6 x3	6.625	3.500	87/8	3/4	3/4	.109	.083	.134	.120
6 x 4	6.625	4.500	87/8	3/4	3/4	.109	.083	.134	.120

* Plus/Minus 1/16"

ECCENTRIC REDUCER

Pipe Size I.P.S.	O.D. Large End D ₁	O.D. Small End D ₂	Length H	Socket Large End S ₁ *	Depth Small End S₂*	Sch 5S Wall Tı	Sch 5S Wall T ₂	Sch 10S Wall T ₁	Sch 10S Wall T ₂
3/4 x 1/2	1.050	.840	35/8	5/8	1/2	.065	.065	.083	.083
1 x ½	1.315	.840	35/8	5/8	1/2	.065	.065	.109	.083
1 x 3/4	1.315	1.050	35/8	5/8	5/8	.065	.065	.109	.083
11/4 x 1	1.660	1.315	35/8	5/8	5/8	.065	.065	.109	.109
1½ x ¾	1.900	1.050	35/8	5/8	5/8	.065	.065	.109	.083
1½ x 1	1.900	1.315	35/8	5/8	5/8	.065	.065	.109	.109
11/2 x 11/4	1.900	1.660	35/8	5/8	5/8	.065	.065	.109	.109
2 x 1	2.375	1.315	35/8	3/4	5/8	.065	.065	.109	.109
2 x 11/4	2.375	1.660	35/8	3/4	5/8	.065	.065	.109	.109
2 x 1½	2.375	1.900	35/8	3/4	5/8	.065	.065	.109	.109
21/2 x 2	2.875	2.375	51/8	3/4	3/4	.083	.065	.120	.109
3 x 2	3.500	2.375	51/8	3/4	3/4	.083	.065	.120	.109
3 x 2½	3.500	2.875	51/8	3/4	3/4	.083	.083	.120	.120
4 x 2½	4.500	2.875	51/8	3/4	3/4	.083	.083	.120	.120
4 x 3	4.500	3.500	51/8	3/4	3/4	.083	.083	.120	.120
6 x 4	6.625	4.500	87/8	3/4	3/4	.109	.083	.134	.120

^{*} Plus/Minus 1/16"

A VERSATILE PIPING SYSTEM FOR CONTROLLING PRODUCT TEMPERATURE IN PROCESS PIPELINES

The Speedline T/D Jacketed Piping system was developed to simplify selection and application of jacketed pipe and fittings by the design engineer.

Important economies can be initiated by the engineer when Speedline advantages are considered during primary design stage.

Competent engineering judgment by the client must first establish proper sizes and grades of materials that will comply with the allowable working stresses at design temperature.

It is then a simple matter to select the preferred Speedline components or assemblies that will meet all design requirements.

SPEEDLINE JACKETED DESIGN SIMPLIFIES INSTALLATION, PROVIDES BETTER TEMPERATURE CONTROL

Speedline Jacketed Piping and Jacketed Fittings consist of a corrosion resistant metal inner (or core) pipe, often referred to as the product line, within a larger (jacket) pipe flanged on the ends. The jacketed pipe and fittings have inlet and outlet connections so that heat transfer medium can flow into, through and out of the space between the two pipes (annulus).

When the jacketed system does not require corrosion resistant metal for the inner (core) pipe, carbon steel may be specified for both core and jacket.

Speedline components or assemblies can simplify install-

ation and improve the results of all jacketed systems, accomplishing a degree of efficiency plus economy not possible otherwise.

The controlled temperatures possible with a Speedline system permits transfer of products in a free flowing fluid state that would ordinarily be sticky, semi-solid or solid at atmospheric temperature. The installation can provide temperature control for the entire pipeline or a specific portion of the system. Product temperature can be maintained either above or below normal surrounding (ambient) temperature, indoors or outdoors.

SPEEDLINE JACKETED PIPING UTILIZES THE HEAT EXCHANGER PRINCIPLE TO CONTROL PRODUCT TEMPERATURE IN THE PIPELINE.

When the product temperature must be maintained above ambient, the product flowing through the inner pipe extracts heat from the heat transfer medium in the annulus.

If product temperature must be kept below ambient, the heat transfer medium in the annulus extracts heat from the product until proper temperature is achieved.

HEAT TRANSFER MEDIA

Steam is most commonly used and is usually readily available. Steam disadvantage is its rapidly rising pressure at relatively small temperature increases.

Any of the commercially available heat transfer

compositions that will accomplish the desired results may be used if the system has been designed to handle the medium selected. The design engineer should evaluate all factors involved in the installation before selecting the heat transfer medium.

HEATING MEDIA

- Hot water
- · Synthetic gases
- Hot Oil
- Saturated steam

COOLING MEDIA

Cold water

Ammonia

Plus various readily available trade-named products developed and marketed by nationally known producers.

HEAT TRANSFER MEDIUM IS CONVEYED FROM UNIT TO UNIT BY JUMPOVER ARRANGEMENT

Since each individual jacketed assembly or jacketed fitting in the system has an isolated annulus, inlets and outlets are located as specified so that jumpovers can be readily assembled in the field when the piping is being erected.

These external jumpovers provide for uniform flow of heat transfer medium throughout the system.

Ordinary threaded pipe and fittings or O.D. tubing with hydraulic or compression type fittings may be used. Jumpovers are not normally supplied by Speedline but rather by the job site installer.

External jumpovers effectively prevent any contamination of the product by the heat transfer medium.

Screwed Fitting Arrangement

Compression Fitting Arrangement

JACKETED PIPE

FABRICATED TO LENGTH SPECIFIED

Straight lengths may be ordered up to 40' long or subject to shipping limitations. Spacers are used to maintain uniform annulus area and are located as required or as specified. All ends are flanged with easy to install Speedline T/D Jacketed Piping Insert Flanges.

Speedline

JACKETED FITTINGS

Provides a complete unit, ready to install. Tangential design of the Speedline Fittings used for the product line reduces number of welds and Speedline T/D Jacketed Piping Insert Flanges eliminate alignment problems.

Speedline

JACKETED ASSEMBLIES

Important savings in material costs and installation time result when prefabricated sections are specified. Layout of piping required or, better yet, an isometric sketch is all that's needed to formulate a cost saving proposal for any installation.

Prefabricated sections are easier to insulate because of reduced number of flanges and jumpover connections.

Speedline SPECIAL JACKETED FITTINGS

The most complex jacketed piping requirements can be more readily accomplished with a Speed-line system. Tangential Fittings and T/D Jacketed Piping Insert Flanges provide an extra measure of design versatility which is more adaptable to difficult processing situations.

Speedline T/D JACKETED PIPING INSERT FLANGE

Insert design insures positive positioning of inner pipe and jacket. And the rotatable flange eliminates bolt hole alignment problems. Flanges may be ordered separately for shop or field fabrication.

THESE ISOMETRIC LAYOUTS ILLUSTRATE THE MANY ADVANTAGES

INDIVIDUAL COMPONENTS INCREASE MATERIAL REQUIREMENTS AND LABOR COSTS See opposite page for this same layout using assemblies.

BILL OF MATERIAL — JACKETED COMPONENTS

JACKETED	ITEM NO.	EM NO		
ITEMS	TIEM NO.		ITEM	FLANGES
Straight Pipe	2 - 4 - 6 - 10 - 12 - 13 - 15 - 18 - 19 - 22 - 24 - 25 - 27 - 31 - 32 - 39 - 41 - 43 - 45 - 47 - 49 - 51 - 54 - 57 - 63 - 65 - 68 - 69 - 70 - 72 - 84 - 85 - 87 - 88 - 90 - 92 - 94 - 96 - 97 - 99 - 102 - 104 - 105 - 107 115 - 119 - 121 - 122 - 123 - 125 - 127 - 129 - 130 - 132 - 133 - 134 138 - 140 - 144 - 145 - 148 - 150 - 152 - 153 - 154	79 - 80 - 82 7 - 109 - 111	75	150
90° Ells	3 - 5 - 16 - 21 - 23 - 26 - 28 - 38 - 42 - 46 - 50 - 58 - 71 - 73 - 89 - 91 - 93 - 95 - 98 - 100 - 103 - 106 - 108 - 110 - 112 - 120 137 - 139 - 144A - 146 - 149 - 151		37	74
Tees— Crosses	8 - 14 - 20 - 29 - 35 - 44 - 52 - 59 - 62 - 64 - 66 - 75 - 101 - 116 - 11	7 - 131 - 142	17	53
K	Valves were not included in tabulations because count would be same in either case.	TOTALS	129	277

OF SPECIFYING Speedling PREFABRICATED JACKETED ASSEMBLIES.

PREFABRICATED ASSEMBLIES SAVE MATERIAL AND REDUCE LABOR COSTS

Jacketed items and flange requirements can be cut in half.

BILL OF MATERIAL PREFAB ASSEMBLIES

JACKETED	PIECES				
ITEMS	ITEM	FLANGES			
Pipe	18	36			
Tees	3	9			
Prefab Assemblies	36	88			
TOTALS	57	133			

PREFAB ECONOMIES

MATERIAL SAVINGS	LABOR SAVINGS
144 Flanges	144 fewer flanges to weld
144 Half Couplings	144 fewer couplings to weld
144 Tubing Connectors	72 fewer units to erect
100/150 Ft. Tubing	72 fewer jumpover to form and assemble

Plus insulation savings because of fewer obstructions

Typical T/D Jacketed Piping Assemblies Custom

Produced for Various Customer Applications.

Speedline T/D JACKETED PIPING

MATERIALS OF CONSTRUCTION

Almost any corrosion problem can be handled since customer can specify proper metal analysis for the inner pipe and the flange insert which are the components that come in contact with the product. Flange inserts are normally made of Type 316 stainless steel unless another analysis or a different alloy is ordered.

The jacket pipe and fittings are usually carbon steel but stainless steels and other alloys may be specified when required. The flange portion of the T/D Jacketed Piping Insert Flange is made of ductile iron or forged carbon steel unless otherwise specified.

SPEEDLINE JACKETED COMPONENTS CAN BE ORDERED IN ANY TYPE OF METAL.

Stainless Steels
Alloy 20
Nickel, Monel, Inconel, Incoloy
Carbon Steel

FORMS AVAILABLE: -

Straight sections of completely jacketed pipe • Individual completely jacketed standard fittings • Pre-fabricated completely jacketed assemblies • Individual completely jacketed special fittings • T/D jacketed piping Insert Flanges • Special T/D jacketed piping Insert Flanges.

Components such as T/D
Jacketed Piping Insert Flanges
and Speedline Fittings can be
ordered separately for shop
or field fabrication.

Jacket Fitting

Speedline Fitting

Speedline Tangential
Design Provides Clearance
to Make This Weld

The T/D Jacketed Piping Insert Flange is a specially engineered modification of the standard Speedline T/D Insert Flange.¹ It provides a shoulder or a recess on the back of the insert. This insures a sound structural weld between the jacket and insert while aligning the jacket for concentricity with the inner pipe. The patented rotatable flange provides for ease of bolt hole alignment.

The T/D Jacketed Piping Insert Flange design insures that the heat transfer medium flows completely from flange to flange within the annulus. Each section is jacketed right up to the flange. Maximum heat transfer capacity is utilized, eliminating troublesome "dead spots" or unjacketed portions.

Corrosion resistance is maintained when inner pipe or fitting is expanded into the insert, instead of welded. It eliminates the detriments of a heat affected zone caused by the welding.

The process design engineer can take advantage of the flexibility of the Speedline jacketed system by selecting components or assemblies...all of which can be installed horizontally or vertically, and which have been designed for maximum compactness where limited space is a problem.

Ease of insulating after erection.

Lower overall installed and operating costs, consistent with superior performance and product control.

Minimum amount of costly maintenance and "shut-downs."

Ease of adding to or modifying existing installation for increased capacity or as a result of processing changes.

All exposed carbon steel is given a coat of aluminum paint (unless specified otherwise by the customer).

The gasket faces of all Speedline jacketed piping are protected prior to shipping. All items are carefully crated, boxed, or otherwise suitably protected during shipment.

All items are carefully marked, with customer's pipe line identifying numbers or symbols for ease in erection.

All items are carefully inspected during fabrication and upon completion by fully trained supervisory personnel.

All items are tested with 100 psig air pressure in annulus. At additional cost other methods of inspection and testing, such as radiographic examination of welds, dye penetrant testing of welds, freon-halide leak detector, hydrostatic, etc. can be performed when specified.

Speedline fabricates jacketed piping to comply with the customer's specifications * and the quality of the fabrication complies with the United States of America Standards Institute Specification USAS-B31.3 pressure piping.

The jacket pipe is normally schedule 40 seamless carbon steel to ASTM A53 specification. However, when required and specified it can be of almost any corrosion resistant metal. Sch. 5 or 10 stainless steel jacket pipes have frequently been used.

All welds cleaned with stainless steel wire brushes or other means.

Speedline jacketed piping installations have been in satisfactory continual service for twenty years; an adequate testimonial to quality. Speedline's reputation is unsurpassed in this field and backed by a company continuously in business for over 150 years.

1 See T/D Flange Data Page 29.

* Note:—It properly remains the responsibility of the customer's piping design engineers, to select the proper sizes and grades of materials to handle the customer's process, and that such selections comply with the allowable working stresses at design temperatures and pressures of USAS-B31.3 or other governing codes or laws where applicable.

SUGGESTED ORDERING CONSIDERATIONS

- 1. Inner Pipe Size—Sch. 5, 10, 40 or 80 size on connecting equipment, pumps, 8. Location of Inlets and Outlets—Size, -type of metal.
- 2. Jacket Pipe Size-Sch. 5, 10, 40 or 80-type of metal. Normally Sch. 40 Carbon Steel but can be corrosion resistant metal.
- 3. Flange Size and Rating-150# or 300#, etc. Usually corresponds to jacket pipe size or inner pipe size. directions for assemblies or special fit- 11. Drawings - Piping layout or iso-Selection often determined by flange tings.*
- valves, etc.
- 4. Type of Metal for Insert of T/D Jacketed Piping Insert Flange.
- 5. Design Pressure and Temperature for both inner pipe and jacket.
- 6. Face to Face Lengths-For straight 10. Other Requirements Customer jacketed pipe.*
 - 7. Center to Face Dimensions-In all transfer medium, etc.

*Normal tolerance ±1/a".

- number, type and location of jumpover connections (usually half couplings, same material as jacket, 2 per unit).
- 9. Type Joint for Inner Pipe or Fitting -Expanded or recessed fillet welded.
- specifications, code requirements, heat
- metric.

RECOMMENDED INNER PIPE AND JACKET PIPE SIZE COMBINATIONS

The fabrication of jacketed elbows is necessarily limited to combinations listed below because of fitting configurations. Any practical combination may be specified for straight lengths of pipe or fittings other than bends.

INNER PIPE SIZE	JACKET PIPE SIZE	INNER PIPE	JACKET PIPE	11	NNER PIPE W INSIDE	ALL THICKN DIAMETER	ESS			WALL THICK DIAMETER	NESS
I.P.S. Sch 5-10-40-80	I.P.S. Sch 5-10-40-80	Outside Diameter	Outside Diameter	Sch 5	Sch 10	Sch 40	Sch 80	Sch 5	Sch 10	Sch 40	Sch 80
1/2	1	.840	1.315	.065 .710	.083 .674	.109 .622	.147 .546	.065 1.185	.109 1.097	.133 1.049	.179 .957
3/4	11/4	1.050	1.660	.065 .920	.083 .884	.113 .824	.154 .742	.065 1.530	.109 1.442	.140 1.380	.191 1.278
1	11/2	1.315	1.900	.065 1.185	.109 1.097	.133 1.049	.179 .957	.065 1.770	.109 1.682	.145 1.610	.200 1.500
11/4	2	1.660	2.375	.065 1.530	.109 1.442	.140 1.380	.191 1.278	.065 2.245	.109 2.157	.154 2.067	.218 1.939
11/2	21/2	1.900	2.875	.065 1.770	.109 1.682	.145 1.610	.200 1.500	.083 2.709	.120 2.635	.203 2.469	.276 2.323
2	3	2.375	3.500	.065 2.245	.109 2.157	.154 2.067	.218 1.939	.083 3.334	.120 3.260	.216 3.068	.300 2.900
21/2	31/2	2.875	4.000	.083 2.709	.120 2.635	.203 2.469	.276 2.323	.083 3.834	.120 3.760	.226 3.548	.318 3.364
3	4	3.500	4.500	.083 3.334	.120 3.260	.216 3.068	.300 2.900	.083 4.334	.120 4.260	.237 4.026	.337 3.826
4	6	4.500	6.625	.083 4.334	.120 4.260	.237 4.026	.337 3.826	.109 6.407	.134 6.357	.280 6.065	.432 5.761
6	8	6.625	8.625	.109 6.407	.134 6.357	.280 6.065	.432 5.761	.109 8.407	.148 8.329	.322 7.981	.500 7.625

INNER PIPE SIZE	JACKET PIPE SIZE	E SIZE ANNULUS AREA SQ. IN.					CROSS SECTIONAL ANNULUS AREA SQ. FT.					
I.P.S. Sch 5-10-40-80	I.P.S. Sch 5-10-40-80	Sch 5 Jacket	Sch 10 Jacket	Sch 40 Jacket	Sch 80 Jacket	Sch 5 Jacket	Sch 10 Jacket	Sch 40 Jacket	Sch 80 Jacket			
1/2	1	.548	.391	.310	.165	.0038	.0027	.0022	.0011			
3/4	11/4	.964	.767	.629	.417	.0067	.0053	.0044	.0029			
1	11/2	1.102	.864	.678	.409	.0076	.0060	.0047	.0028			
11/4	2	1.794	1.490	1.192	.789	.0125	.0103	.0083	.0055			
11/2	21/2	2.926	2.615	1.950	1.403	.0203	.0181	.0135	.0097			
2	3	4.296	3.913	2.959	2.175	.0298	.0272	.0205	.0151			
21/2	31/2	5.05	4.61	3.39	2.40	.035	.032	.024	.017			
3	4	5.13	4.63	3.10	1.88	.036	032	.022	.013			
4	6	16.32	15.82	12.98	10.16	.113	.110	.090	.071			
6	8	21.04	20.01	15.56	11.19	.146	.139	.108	.078			

Deedline T/D® JACKETED PIPING

TYPICAL DETAILS OF STRAIGHT JACKETED PIPE ILLUSTRATING SPEEDLINE VERSATILITY

- 2. Inner pipe—Sch.5—10—40 or 80 as specified.
- 3. Jacket pipe—Sch.5—10—40 or 80 as specified.
- 24'-0" max. (with inner pipe in one piece) 40'-0" max. (longer lengths on application)
- 5. Jacket inlet or outlet-size, location, type connec-
- 6. Inner pipe expanded into insert-see detail at right
- 7. Inner pipe fillet welded to insert—see detail at left for alternate expanded method.
- 8. IPS pipe type "Jumpover." Note: Jumpovers are not normally supplied by Speedline but rather by the job site installers.
- 9. Tubing type "Jumpover" with hydraulic or compression type fittings.
- 10. When specified, inner pipe may be reinforced by "wear plates" at inlets, where erosion by impingement of heat transfer medium is expected.
- 11. Where inner pipe size flanges are shown, jacket pipe is fusion welded to insert. Drawing omits this weld to illustrate insert shoulder for concentric alignment of jacket pipe.
- 12. See page 53 for Ordering Considerations.

longitudinally.

SPEEDLINE T/D JACKETED PIPE

left flange size same as jacket pipe size— Right flange same size as inner pipe size

SECTION A-A

U.S. Patent No. 3.284.112

Flange Size Same as Jacket Pipe Size

(Dimensions are in Inches)

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange Di	mensions			Inse	ert Dimensio	ins ⁵	
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	150#	Outside Diam. O	Flange Thick. Q	Bolt Circle Diam. BC	No. & Diam. of Bolt Holes	Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Recess L ⁴	Depth of Groove G
1/2	1	1	41/4	%6	31/8	4—5/8	131/32	1∕16	21/32	17/32	1/8
3/4	11/4	11/4	45/8	5/8	31/2	4—5/8	23/8	1∕16	11/16	%16	1/8
1	11/2	11/2	5	11/16	37/8	4—5/8	221/32	⅓6	3/4	5/8	1/8
11/4	2	2	6	3/4	43/4	4—3/4	3¾6	⅓6	27/32	23/32	1/8
1 1/2	21/2	21/2	7	7/8	51/2	4—3/4	3¾	⅓6	15/16	13/16	1/8
2	3	- 3	71/2	15/16	6	4—3/4	413/32	1/16	1	7/8	1/8
21/2	31/2	31/2	81/2	15/16	7	8—¾	415/16	⅓6	11/8	1	1/8
3	4	4	9	15/16	71/2	8—¾	515/32	1/16	11/8	1	1/8
4	6	6	11	1	91/2	8—7/8	723/32	₹32	11/8	15/16	₹16
6	8	8	131/2	11/8	113/4	8—7/8	10	1/8	13/8	1¾6	₹16

- 1. Standard jacket recess will accommodate Sch 5, 10 and 40 jacket pipe. If Sch 80 is to be used it must be specified.
- 2. Bolt holes are 1/8 larger than recommended bolt diameter.
- 3. To nearest 1/32.
- 4. Tolerance ±.010.
- 5. Gasket face of insert has machined concentric V grooves.

300# T/D JACKETED PIPING INSERT FLANGE

U.S. Patent No. 3,284,112

Flange Size Same as Jacket Pipe Size

(Dimensions are in Inches)

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange D	imensions			Ins	ert Dimensio	ons ⁵	
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	300#	Outside Diam. O	Flange Thick. Q	Bolt Circle Diam. BC	No. & Diam. of Bolt Holes	Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Recess L4	Depth of Groove G
1/2	1	1	47/8	11/16	31/2	4—3/4	131/32	1∕16	3/4	5/8	1/8
3/4	11/4	11/4	51/4	3/4	37/8	4—3/4	23/8	1∕16	¹ 3/16	11/16	1/8
1	11/2	11/2	61/8	13/16	41/2	4—7/8	221/32	⅓6	7/8	3/4	1/8
11/4	2	2	61/2	7/8	5	8—3/4	3¾6	1/16	15/16	¹ 3/16	1/8
11/2	21/2	21/2	71/2	1	57/8	8—7/s	3¾	1∕16	11/16	15/16	1/8
2	3	3	81/4	11/8	6%	8—7/8	413/32	1∕16	13/16	11/16	1/8
21/2	31/2	31/2	9	13/16	71/4	8—7/8	415/16	⅓6	11/4	11/8.	1/8
3	4	4	10	11/4	71/8	8—7/8	515/32	1/16	1%6	13/16	1/8
4	6	6	121/2	17/16	10%	12—7/8	723/32	₹32	117/32	111/32	3∕16
6	8	8	15	15/8	13	12—1	10	1/8	13/4	1%6	₹16

- 1. Standard Jacket recess will accommodate Sch 5, 10 and 40 Jacket pipe. If Sch 80 is to be used it must be specified.
- 2. Bolt holes are 1/2 larger than recommended bolt diameter.
- 3. To nearest 1/32.

4. Tolerance ±.010. 5. Gasket face of insert has machined concentric V grooves.

Flange Size Same as Inner Pipe Size

(Dimensions are in Inches)

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange D	imensions			In	sert Dimen	sions ⁵	
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	150#	Outside Diam. O	Flange Thick- ness Q	Bolt Circle Diam. BC	No. & Diam. of Bolt Holes	Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Shoulder L ⁴	Depth of Shoulder G
1/2	1	1/2	31/2	½ 16	23/8	4—5/8	113/32	⅓6	11/16	1	1∕16
3/4	11/4	3/4	37/8	1/2	23/4	4—5/8	13/4	1∕16	11/8	11/16	1∕16
1	11/2	1	41/4	% 6	31/8	4—5/8	2	1∕16	1%6	11/8	⅓6
11/4	2	11/4	45/8	5/8	31/2	4—5/8	217/32	1∕16	11/4	1¾6	1∕16
11/2	21/2	11/2	5	11/16	37/8	4—5/8	3	⅓6	13/8	11/4	1/8
2	3	2	6	3/4	43/4	4-3/4	311/16	⅓6	17/16	15/16	1/8
21/2	31/2	21/2	7	7/8	51/2	4—3/4	47/32	1∕16	1%6	17/16	1/8
3	4	3	71/2	15/16	6	4—3/4	423/32	1/16	15/8	11/2	1/8

- Jacket pipe schedule must be specified in order to provide proper shoulder diameter.
- Bolt holes are 1/8 larger than recommended bolt diameter.
- 3. To nearest 1/32.
- Tolerance ±.010.
- 5. Gasket face of insert has machined concentric V grooves.

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange D	imensions				1	nsert Dimension	ns ⁵		
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	150#	Outside Diam. O	Flange Thick- ness Q	Bolt Circle Diam. BC	No. & Diam. of Bolt Holes 2. 6	Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Shoulder L ⁴	Depth of Shoulder G	Counter Bore Diam. C	Counter Bore Depth W
4	6	4	9	¹⁵ ⁄16	71/2	8—3/4	613/32	1∕16	21/4	21/8	1/8	55/32	11/8
6	8	6	11	91/2	8—7/8	83/8	3/32	23/8	23/6	3∕16	75/32	11/4	

(6x8x6)

- Jacket pipe schedule 40 or 80 must be specified in order to provide proper shoulder diameter. Jacket pipe schedules 5 or 10 require special adaptation.
- Bolt holes are 1/8 larger than recommended bolt diameter.
- To nearest 1/32.
- Tolerance ±.010.
- Gasket face of insert has machined concentric V grooves.
- Recommend use of studs and 2 nuts due to close clearance.

Flange Size Same as Inner Pipe Size

(Dimensions are in Inches)

- -Q-
- L G
!

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange Di	imensions			In	sert Dimen	sions ⁵	
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	300#	Outside Diam. O	Flange Thick- ness Q	Bolt Circle Diam. BC	No. & Diam. of Bolt Holes	Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Shoulder L ⁴	Depth of Shoulder G
1/2	1	1/2	3¾	% ₁₆	2%	4—%	113/32	1/16	1¾6	11/8	1∕16
3/4	11/4	3/4	45/8	5/8	31/4	4—3/4	125/32	1∕16	11/4	1¾6	1/16
1	11/2	1	41/8	11/16	31/2	4—3/4	2	1∕16	15/16	11/4	1∕16
11/4	2	11/4	51/4	3/4	37/8	4—3/4	217/32	1∕16	13/8	15/16	1∕16
11/2	21/2	11/2	61/8	13/16	41/2	4—7/8	31/32	1∕16	11/2	13/8	1/8
2	3	2	61/2	7/8	5	8—¾	323/32	⅓ 6	1%6	17/16	1/8
21/2	31/2	21/2	71/2	1	5%	8—7/8	47/32	1∕16	111/16	1%6	1/8
3	4	3	81/4	11/8	6%	8—7/8	423/32	1/16	113/16	111/16	1/8

- 1. Jacket pipe schedule must be specified in order to provide proper shoulder diameter.
- 2. Bolt holes are 1/2 larger than recommended bolt diameter.
- 3. To nearest 1/32.
- 4. Tolerance ±.010.
- 5. Gasket face of insert has machined concentric V grooves.

(6x8x6)

Inner Pipe Size	Jacket Pipe Size	Flange Size		Flange D	imensions					Insert Dimensio	ons ⁵		
I.P.S. Sch. 5-10 40-80	I.P.S. Sch. 5-10 40-80 ¹	300#	Outside Diam. O Q Bolt Diam. of Diam. of Diam. of Diam. BC Bolt Diam. Bolt Holes				Gasket Face Diam. R ³	Raised Face Thick. RF	Length of Insert Y	Gasket Face to Back of Shoulder L4	Depth of Shoulder G	Counter Bore Diam. C ³	Counter Bore Depth W
4	6	4	10	11/4	77/8	8—7/8	61/16	1/16	211/16	2%	1/8	5 1/32	1%6
6	8	6	121/2	17/16	10%	12—7/8	9	3∕32	21/16	21/4	3/16	75/32	15/16

- Jacket pipe schedule must be specified in order to provide proper shoulder diameter. 4" x 6" x 4" will accommodate Schedule 40 or 80 Jacket. Jacket pipe Schedule 5 or 10 require special adaptation. 6" x 8" x 6" will accommodate Schedule 5, 10, 40 or 80 Jacket but schedule must be specified.
- Bolt holes are 1/8 larger than recommended bolt diameter.
- To nearest 1/32.
- 4. Tolerance ±.010.
- Gasket face of insert has machined concentric V grooves.
- 6. For 4" x 6" x 4" recommend use of studs and two nuts due to close clearance.

With 150# T/D Flanges Same Size as Jacket Pipe

(Dimensions are in Inches)

Inner Pipe Size	Jacket Pipe Size	Flange Size	Cer	nter to Fa	ce Dimensi	on	Ctr. to Ctr.	Face to Back					Flange Da	ta			
I.P.S. Sch 5-10 40-80	I.P.S. Sch 5-10 40-80	150#	90° EII A	45° EII B	Tee Cross C1	180° Return Bend A	180° Return Bend CC	180° Return Bend K²	0.D. 0	Flange Thk. Q	Bolt Circle Dia. BC	No. & Dia. Bolt Holes	Gasket Face Dia. R2	Thk. Raised Face RF4	Sug- gested Inlet & Outlet Size ³	90° EII & Tee Fig. Clearance X	180° Flg. Clearance Z
1/2	1	1	4	21/2	4	4	53/8	421/32	41/4	%6	31/8	4—5/8	131/32	1∕16	3/8	17/32	11/8
3/4	11/4	11/4	41/4	3	41/4	41/4	53/4	53/32	45/8	5/8	31/2	4—5/8	23/8	1/16	1/2	11/4	11/8
1	11/2	1.1/2	41/2	31/8	41/2	41/2	65/8	57/16	5	11/16	37/8	4—5/8	221/32	1/16	1/2	11/4	1%
11/4	2	2	5	31/4	5	5	7	6¾6	6	3/4	43/4	4—3/4	3¾6	1/16	3/4	15/32	1
11/2	21/2	21/2	51/2	31/2	51/2	51/2	8	615/16	7	7/8	51/2	4—¾	3¾	1∕16	3/4	11/16	1
2	3	3	6	4	6	6	81/2	73/4	71/2	15/16	6	4—3/4	413/32	1∕16	3/4	11/4	1
21/2	31/2	31/2	61/2	41/2	61/2	61/2	10	81/2	81/2	¹⁵ ⁄16	7	8—3/4	415/16	1/16	3/4	11/8	11/2
3	4	4	7	51/2	7	7	11	91/4	9	15/16	71/2	8—¾	515/32	1/16	3/4	13/8	2
4	6	6	81/2	61/2	81/2	81/2	141/4	1113/16	11	1	91/2	8 <u>-</u> 7/8	723/32	3∕32	3/4	17/8	31/4
6	8	8	111/4	81/4	111/4	111/4	18	15%6	131/2	-11/8	113/4	8—%	10	1/8	1	31/8	41/2

- 1. Center to face for reducing outlet tees and reducing outlet crosses are same as for straight tee and cross.
- 2. To nearest 1/32.
- Two half-couplings per fitting is standard, on opposite sides, but size, number, type and location may vary to suit customer requirements. Dotted lines indicate
 alternate inlet and outlet locations.
- 4. Gasket face of insert has machined concentric V grooves.

With 300# T/D Flanges Same Size as Jacket Pipe

(Dimensions are in Inches)

Inner Pipe Size	Jacket Pipe Size	Flange Size	Ce	nter to Fa	ace Dimen	sion	Ctr. to Ctr.	Face to Back					Flange Da	nta			
I.P.S. Sch 5-10 40-80	I.P.S. Sch 5-10 40-80	300#	90° EII A	45° EII B	Tee Cross C1	180° Return Bend A	180° Return Bend CC	180° Return Bend K²	0.D. 0	Flange Thk. Q	Bolt Circle Dia. BC	No. & Dia. Bolt Holes	Gasket Face Dia. R ²	Thk. Raised Face RF4	Sug- gested Inlet & Outlet Size ³	90° EII & Tee Fig. Clearance X	180° Flg. Clearance Z
1/2	1	1	4	21/2	4	4	5%	421/32	47/8	11/16	31/2	4-3/4	131/32	1∕16	3/8	13/16	1/2
3/4	11/4	11/4	41/4	3	41/4	41/4	5¾	53/32	51/4	3/4	37/8	4—3/4	23/8	1/16	1/2	13/16	1/2
1	11/2	11/2	41/2	31/8	41/2	41/2	6%	57/16	61/8	13/16	41/2	4—7/8	221/32	1∕16	1/2	%6	1/2
11/4	2	2	5	31/4	5	5	7	6¾6	61/2	7/8	5	8—¾	3¾6	1∕16	3/4	13/16	1/2
11/2	21/2	21/2	51/2	31/2	51/2	51/2	8	615/16	71/2	1	57/8	8—%	3¾	1/16	3/4	11/16	1/2
2	3	3	6	4	6	6	81/2	73/4	81/4	11/8	65/8	8—7/8	413/32	1∕16	3/4	11/16	1/4
21/2	31/2	31/2	61/2	41/2	61/2	61/2	10	81/2	9	13/16	71/4	8—7/8	415/16	1∕16	3/4	3/4	1
3	4	4	7	51/2	7	7	11	91/4	10	11/4	71/8	8—7/8	515/32	1/16	3/4	11/16	1
4	6	6	81/2	61/2	81/2	81/2	141/4	1113/16	121/2	17/16	10%	12—7/8	723/32	₹32	3/4	11/16	13/4
6	8	8	111/4	81/4	111/4	111/4	18	15%6	15	1 5/8	13	12—1	10	1/8	1	2	3

- 1. Center to face for reducing outlet tees and reducing outlet crosses are same as for straight tee and cross.
- 2. To nearest 1/32.
- Two half-couplings per fitting is standard, on opposite sides, but size, number, type and location may vary to suit customer requirements. Dotted lines indicate
 alternate inlet and outlet locations.
- 4. Gasket face of insert has machined concentric V grooves.

With 150# T/D Flange Same Size as Inner Pipe Size

(Dimensions are in Inches)

Jacket pipe is fusion welded to insert. Drawing omits this weld to illustrate insert shoulder for concentric alignment of jacket pipe.

Pipe Size	Jacket Pipe Size	Flange Size	nge ze Center to Face Dimension					Face to Back	Flange Data									
	I.P.S. Sch 5-10 40-80	150#	90° Ell A	45° EII B	Tee Cross C1	180° Return Bend A	180° Return Bend CC	180° Return Bend K ²	0.D. 0	Flange Thk. Q	Bolt Circle Dia. BC	No. & Dia. Bolt Holes	Gasket Face Dia. R2	Thk. Raised Face RF4	Sug- gested Inlet & Outlet Size ³	90° EII & Tee Fig. Clearance X	180° Fig. Clearance Z	
1/2	1	1/2	4	21/2	4	4	5%	421/32	31/2	% 16	23/8	4—5/8	113/32	⅓ 6	3/8	13/4	17/8	
3/4	11/4	3/4	41/4	3	41/4	41/4	5¾	53/32	37/8	1/2	2¾	4—%	13/4	1/16	1/2	13/4	17/8	
1	11/2	1	41/2	31/8	41/2	41/2	6%	57/16	41/4	%6	31/8	4—5/8	2	1∕16	1/2	13/4	23/8	
11/4	2	11/4	5	31/4	5	5	7	6¾6	45/8	5/8	31/2	4—5/8	217/32	1∕16	3/4	2	23/8	
11/2	21/2	11/2	51/2	31/2	51/2	51/2	8	615/16	5	11/16	37/8	4—5/8	3	1/16	3/4	21/4	3	
2	3	2	6	4	6	6	81/2	73/4	6	3/4	43/4	4—3/4	311/16	1∕16	3/4	23/16	21/2	
21/2	31/2	21/2	61/2	41/2	61/2	61/2	10	81/2	7	7/8	51/2	4—3/4	47/32	1∕16	3/4	2	3	
3	4	3	7	51/2	7	7	11	91/4	71/2	15/16	6	4—3/4	423/32	1/16	3/4	21/4	31/2	
45	6	4	81/2	61/2	81/2	81/2	141/4	1113/16	9	¹ 5/16	71/2	8—3/4	613/32	1∕16	3/4	3	51/4	
6 ⁵	8	6	111/4	81/4	111/4	111/4	18	15%6	11	1	91/2	8—7/8	8%	3/32	1	421/32	7	

- 1. Center to face for reducing outlet tees and reducing outlet crosses are same as for straight tee and cross.
- 2. To nearest 1/32.
- Two half-couplings per fitting is standard, on opposite sides, but size, number, type and location may vary to suit customer requirements. Dotted lines indicate alternate inlet and outlet locations.
- 4. Gasket face of insert has machined concentric V grooves.
- 5. 4" x 6" x 4" & 6" x 8" x 6" (Recommended use of studs and two nuts due to clearances. Jacket Sch 40 or 80 only. Sch 5 or 10 Jacket requires special adaptation).

With 300# T/D Flanges Same Size as Inner Pipe Size

(Dimensions are in Inches)

Jacket pipe is fusion welded to insert. Drawing omits this weld to illustrate insert shoulder for concentric alignment of jacket pipe.

Pipe Size	Jacket Pipe Size	Flange Size	e Center to Face Dimension					Face to Back	Flange Data									
	I.P.S. Sch 5-10 40-80	300#	90° EII A	45° EII B	Tee Cross C1	180° Return Bend A	180° Return Bend CC	180° Return Bend K ²	0.D. 0	Flange Thk. Q	Bolt Circle Dia. BC	No. & Dia. Bolt Holes	Gasket Face Dia. R ²	Thk. Raised Face RF4	Sug- gested Inlet & Outlet Size ³	90° EII & Tee Fig. Clearance X	180° Flg. Clearance Z	
1/2	1	1/2	4	21/2	4	4	5%	421/32	3¾	%6	2%	4—%	113/32	1∕16	3/8	17/8	1 5/8	
3/4	11/4	3/4	41/4	3	41/4	41/4	5¾	53/32	45/8	5/8	31/4	4—3/4	125/32	1/16	1/2	11/4	11/8	
1	11/2	1	41/2	31/8	41/2	41/2	65/8	57/16	47/8	11/16	31/2	4—3/4	2	1∕16	1/2	15/16	13/4	
11/4	2	11/4	5	31/4	5	5	7	6¾6	51/4	3/4	37/8	4—3/4	217/32	1/16	3/4	1%6	13/4	
11/2	21/2	11/2	51/2	31/2	51/2	51/2	8	615/16	61/8	13/16	41/2	4—7/8	31/32	1/16	3/4	1%6	17/8	
2	3	2	6	4	6	6	81/2	73/4	61/2	7/8	5	8—¾	323/32	1/16	3/4	113/16	2	
21/2	31/2	21/2	61/2	41/2	61/2	61/2	10	81/2	71/2	1	57/8	8—%	47/32	1∕16	3/4	111/16	21/2	
3	4	3	7	51/2	7	7	11	91/4	81/4	11/8	6%	8—7/8	423/32	1/16	3/4	111/16	23/4	
45	6	4	81/2	61/2	81/2	81/2	141/4	1113/16	10 -	11/4	71/8	8—7/8	67/16	1∕16	3/4	23/16	41/4	
6 ⁵	8	6	111/4	81/4	111/4	111/4	18	15%6	121/2	17/16	10%	12—7/8	9	₹32	1	315/32	51/2	

- 1. Center to face for reducing outlet tees and reducing outlet crosses are same as for straight tee and cross.
- 2. To nearest 1/32.
- Two half-couplings per fitting is standard, on opposite sides, but size, number, type and location may vary to suit customer requirements. Dotted lines indicate
 alternate inlet and outlet locations.
- 4. Gasket face of insert has machined concentric V grooves.
- 5. 4" x 6" x 4" (Recommend use of studs and two nuts due to close clearances. Jacket Sch 40 or 80 only. Sch 5 or 10 Jacket requires special adaptation).

Speedline JACKETED REDUCERS Concentric - Eccentric

CONCENTRIC REDUCER 150# T/D Jacket Size Flanges

CONCENTRIC REDUCER 300# T/D Jacket Size Flanges

CONCENTRIC REDUCER 150# T/D Inner Size Flanges⁷

CONCENTRIC REDUCER 300# T/D Inner Size Flanges⁷

ECCENTRIC REDUCER
150# T/D Jacket Size Flanges

ECCENTRIC REDUCER
150# T/D Inner Size Flanges⁷

Inner Reducer Size Sch 5-10-40-80	Jacket Reducer Size Sch 5-10-40-80	Face to Face ²	Suggested ¹ Inlet & Outlet Size	150# o	Size ^{5,6} acket Size or 300#	Flange Same as I 150# o	Size ^{5,6} nner Size r 300#	
00.10 10 00	0011 0 10 40 00		outlet Size	Large End	Small End	Large End	Small End	
3/4 X 1/2			1/2	11/4	1	3/4	1/2	
1 x ½	1½ x 1	6	1/2	11/2	1	1	1/2	
1 x 3/4	11/2 x 11/4	6	1/2	11/2	11/4	1	3/4	
11/4 x 3/4	2 x 11/4	6	3/4	2	11/4	11/4	3/4	
1¼ x 1	2 x 1½	6	3/4	2	11/2	11/4	1	
1½ x ¾	21/2 x 11/4	7	3/4	21/2	11/4	11/2	3/4	
1½ x 1	21/2 x 11/2	7	3/4	21/2	11/2	11/2	1	
11/2 x 11/4	21/2 x 2	7	3/4	21/2	2	11/2	11/4	
2 x 1	3 x 1½	7	3/4	3	11/2	2	1	
2 x 11/4	3 x 2	7	3/4	3	2	2	11/4	
2 x 1½	3 x 2½	7	3/4	3	21/2	2	11/2	
2½ x 1¼	3½ x 2	8	3/4	31/2	2	21/2	11/4	
21/2 x 11/2	31/2 x 21/2	8	3/4	31/2	21/2	21/2	11/2	
21/2 x 2	31/2 x 3	8	3/4	31/2	3	21/2	2	
3 x 11/4	4 x 2	8	3/4	4	2	3	11/4	
3 x 1½	4 x 2½	8	3/4	4	21/2	3	11/2	
3 x 2	4 x 3	8	3/4	4	3	3	2	
3 x 2½	4 x 3½	8	3/4	4	31/2	3	21/2	
4 x 2	6 x 3	10	3/4	6	3	4 3,4	2	
4 x 2½	6 x 3½	10	3/4	6	31/2	4 3,4	21/2	
4 x3	6 x 4	10	3/4	6	4	4 3,4	3	
6 x3	8 x 4	12	1	8	4	6 3	3	
6 x4	8 x 6	12	1	. 8	6	6 3.4	4 3,4	

- 1. Two Half Couplings per fitting is standard, on opposite sides, but size, number, type and location may vary to suit customer requirements.
- Face to Face length may be increased on either large end or small end, or both, to incorporate pipe size reduction within a section of straight jacketed pipe or assembly.
- 150# Flanges—recommend use of studs and two nuts due to close clearance. Use Sch 40 or Sch 80 Jacket only. Sch 5 or Sch 10 Jacket requires special adaptation.
- 4. 300# Flanges—recommend use of studs and two nuts due to close clearance. Use Sch 40 or Sch 80 Jacket only. Sch 5 or Sch 10 Jacket requires special adaptation.
- 5. Gasket face of insert has machined concentric V grooves.
- 6. Specify flange size and 150# or 300# rating. See appropriate preceding page for Flange Dimensional Data.
- 7. Jacket is fusion welded to insert. This weld is not illustrated in order to show detail or insert shoulder.

EXAMPLES OF T/D JACKETED SYSTEM VERSATILITY

Illustration above shows a Jacketed 90 deg. Ell with a 150# Jacket Size Flange on one end and a 300# Jacket Size Flange on the other end.

Jacket pipe is fusion welded to

Illustration above shows a Jacketed 90 deg. Ell with a 150# Inner Size Flange on one end and a 300# Inner Size Flange on the other end.

MANY ASSEMBLY COMBINATIONS ARE PRACTICAL AND SIMPLE WITH SPEEDLINE JACKETED SYSTEM DESIGN

- · Without changing center to face dimension
- With ample flange clearance
- Also applicable to tees, crosses, etc.
- Allows any combination of 150# or 300# Flange either Jacket size flanges are required when the same comjacket size or inner size
- · Provides for use of inner size flanges which are fre-

quently required when jacketed pipe, fittings, or assemblies are to be connected to non-jacketed valves, pumps, sight glasses and other non-jacketed components, which would have inner (product line) size flanges

ponents mentioned above are jacketed and usually have jacket size flanges

DESIGNED FOR EASIER ALIGNMENT AND ASSEMBLY

Speedline Tangential Fittings are the most versatile pipe fittings marketed today. Assembly can be readily accomplished by any one of the metallurgical joining methods such as welding, brazing or soldering. The Tangential feature makes the very same butt weld fitting equally advantageous for assembly by a mechanical method such as expanding (page 29).

Extra fitting length also provides for use of Aligning Connectors (page 24) or Unions (page 26).

Speedline Belled End Fittings (page 39) have accurately formed socket ends that can be welded, brazed or soldered.

The versatility of Speedline provides distinct advantages which make the process piping job easier for the designer, fabricator or installer. Speedline fittings can be used for whichever assembly method or combination of methods is judged to be best suited to the particular application.

Extra length adds alignment advantages that can reduce assembly time and speed fit-up. Several alignment methods are shown on this page; each of which can have variations. Note how Speedline Tangential Design simplifies the procedures.

BUTT WELDS ARE ALWAYS STRAIGHT-TO-STRAIGHT

WITH Speedline

The advantages of welding straight to straight are many and are readily apparent when fit-up of process piping begins. There's more clearance to do the welding and, since the welds will be made at a point away from the change in direction the whole operation from fit-up through alignment, tacking and finish welding is facilitated.

Simple clamping arrangements, some of which are illustrated on this page, can be used to their fullest advantage with Speedline **Tangential** Fittings.

Commercially available clamps designed for holding sections of pipe for tacking or welding can also be used to clamp Speedline Tangential Fittings in position. The tangential feature makes the difference by providing plenty of room to properly position the clamp to insure true alignment.

When demountable joints are a requirement, the extra length on every end of every Speedline Fitting makes flanged or union connections (on one end or all ends) simply a matter of direct attachment by either expanding or welding.

DIMENSIONED FOR MACHINE WELDING

Extra fitting length is also very practical when automatic equipment is used. The increased clearances expedite setup and operation.

WELDING, BRAZING & SOLDERING INFORMATION IS LISTED ON FOLLOWING PAGES

More detailed information is available from the metal producers and welding equipment manufacturers. The American Welding Society is an excellent source for such information. The following four helpful references are listed:

- Soldering Manual
- Brazing Manual
- Welding of Austenitic Chromium Nickel Steel Pipe & Tube

BRAZING • SOLDERING STAINLESS STEELS

BRAZING -

Stainless steels are readily and easily brazed when correct preparation and techniques are used.

Fit Tolerances. Typical fit tolerances of .004" to .016" should be maintained for good capillary action. Use Speedline Aligning Connectors (page 24) or Belled End Fittings (page 39) to expedite fit up and brazing procedure.

Clean & Flux. Proper cleaning and fluxing are important to all brazing and are especially so with the stainless steels. The O.D. of the pipe and the I.D. of the Aligning Connector or Belled End Fitting must be spotlessly clean. Then flux and assemble them within a few minutes. The brazed joints should be completed within no more than one-half hour after fluxing.

Brazing Alloy. Brazing alloy used should be carefully chosen to be compatible with the piping materials and the intended service. With very few exceptions these alloys will be of the AWS Filler Metal Classification B Ag. These filler metals are sometimes called hard solders or silver solders. When the proper alloy is chosen, use the flux recommended by the manufacturer. The American Welding Society's "Brazing Manual" contains lists of filler metal alloys and fluxes suitable for use on stainless steels.

Heating. Any heating device which will supply the right amount of even heat will be satisfactory for brazing stainless steel pipe and fittings. An oxygen and acetylene torch, using a neutral flame is the most commonly used heat source. After brazing excess flux and flux residues should be removed.

Speedline Aligning Connectors fit over ends of Speedline Fittings or pipe. Can be welded, brazed or soldered.

SOLDERING -

The stainless steels are readily and easily soldered when correct techniques and preparation are employed.

Fit Tolerances. Typical fit tolerances of .003 to .006 inches should be maintained for good capillary action. Fit-up without difficulty can be accomplished with dimensionally accurate Speedline Aligning Connectors or Belled End Fittings.

Clean & Flux. The O.D. of the pipe and the I.D. of the Aligning Connector or Belled End Fitting should be spotlessly clean. It is best to clean them with a fine emery paper, then flux and assemble the parts within a few minutes. An acid type flux should be used, and in most cases liquid acid fluxes work better on the stainless steels than do the paste fluxes.

Solder Alloy. Since most stainless steels are used to resist corrosion a solder alloy should be chosen that will also resist the corrosive materials or atmospheres to which the piping is exposed. If tin-lead solders are used an alloy containing not less than 50% tin is essential for high quality work. Many people use a 63% tin (eutectic) 37% lead alloy. For services where lead cannot be used a 95% tin, 5% silver alloy is often used. Use a flux recommended by the solder manufacturer to insure compatibility with the solder alloy.

Heating. Any heating device which will supply the right amount of even heat will be satisfactory for soldering stainless steel pipe. An acetylene and air torch is almost universally used. After soldering excess flux and flux residues should be removed. Washing with warm water will usually do the job.

Speedline Belled End Fittings simplify fit up for soldering, brazing or welding.

The same general techniques apply to Monel and Nickel pipe and fittings.

OUTLINE FOR PREPARATION OF A BRAZING OR SOLDERING PROCEDURE

- 1. Base Metal. Describe.
- 2. End Preparation. Specify how the pipe is to be cut and conditions of fit in the socket.
- Cleaning. State how the pipe is to be cleaned. (Pickled, machined, filed, emeried, chemically cleaned, or a combination of several methods.)
- Fluxing. List flux to be used and how it is to be applied.
- Brazing or Soldering Alloy. Indicate the brazing or soldering alloy to be used.
- 6. Method of Heating. Tell if the parts are to be heated in a furnace or by a torch or by electrical apparatus or by some other means.
- Cooling. Tell if the parts are to be cooled slowly, or in air, or by fast quenching.
- Cleaning. Indicate how flux is to be removed and the parts cleaned for acceptance.
- Testing and Inspection. Define how the completed assembly is to be tested and inspected.

WELDING STAINLESS STEEL PROCESS PIPING

Electric Arc Welding. Almost all stainless steel pipe is welded today by the electric arc method. For relatively heavy walls of one quarter inch and up, or for heavy sections such as flanges, coated electrodes with lime or titania type coating and a D.C. power source are used. For most lighter wall pipe inert gas shielded arc welding with a D.C. power source is used for both butt and fillet welds.

Current & Electrodes. D.C. reverse polarity (electrode positive) should be used for covered electrodes. D.C. straight polarity (electrode negative) should be used for inert gas shielded welding.

For inert gas shielded, tungsten electrode welding of stainless steels, 2% thoriated tungsten should be used. The tungsten electrode should be sharpened to a pencil point and kept that way, by regrinding when necessary. No more heat than is necessary to melt the metal should be used. This means that the amperage should be kept as low as is possible and still melt the inside edge of the pipe wall.

Shielding Gas. Argon should be the shielding gas for all but a few special cases. It should be controlled by an Argon flow meter and regulator and should reach the weld area through a nozzle or cup at the end of the torch or electrode holder. This cup should be wide enough to cover the weld area. The Argon should flow at from eight to fifteen cubic feet per hour, for most joints, but at a rate that causes as little turbulence as possible, commensurate with the amount of gas required. If more gas is required change to a larger cup as the gas flow is increased.

If superior quality welds are required a **back-up** or **purge** of inert gas should be used inside the pipe. See drawing below:

Inert Gas Back-Up

Cleaning & Degreasing. Pipe and fittings should be cleaned and degreased and the surfaces to be welded should be brushed with a stainless wire brush before assembly. If there are burrs or rough edges on the pipe they should be smoothed with a file or grinding wheel.

Alignment & Tacking. After proper alignment the joint should be "tacked" in four places. After welding is started one pass around the pipe should be completed without interruption so as to avoid warping or drawing. Filler metal is not normally required in the lighter sections but may be used if desired.

Filler Metal. Filler metal, if required, should be chosen to be compatible with the piping material. Generally, smaller sizes of filler metal rods are advantageous. On welds in pipe four inch and smaller filler metal should not be over 3/32" or 1/6" in diameter.

Inspection. If there are any cracks, pinholes or undercut, they should be filed or ground out to clean metal before applying another pass. If such defects appear in the finished weld, they should be ground out and necessary repairs made.

Oxy-acetylene Welding. Light wall pipe and Speedline fittings can be successfully welded with oxy-acetylene flame. For good results the weld area must be carefully cleaned and fluxed and the welder must be experienced in this particular application. Unless there is some special reason for oxy-acetylene welding, it is not recommended for stainless piping.

Welding Procedures. To assure consistently sound joints a welding procedure should be prepared. It may require very little or a great deal of detail, depending on the type of work to be done. Basic requirements are listed in outline below:

OUTLINE FOR PREPARATION OF A WELDING PROCEDURE

- 1. Base Metal. Describe.
- End Preparation. Specify how the pipe is to be cut; the bevel and cleaning (if any). Whatever needs to be done to prepare ends for welding.
- Alignment. List alignment requirements, how they are to be met and how the pipe is to be spaced.
- 4. Welding Process. Decide process to be used, such as oxy-acetylene, electric arc, coated consumable electrodes, inert gas shielded, etc. Then give details of tip size, flame, etc.; or voltage, amperage and electrode size. If arc welding, give current characteristics (A.C. or D.C.) and electrode positive or negative.
- 5. Shielding. Tell how the weld is to be shielded. With flux painted on, or with flux from electrode, or with shielding gas. If the inside of the pipe is to be purged and/or shielded give details.
- Preheat & Interpass Temperatures. Preheat and interpass temperature control, if required.
- Filler Metal. Indicate filler metal to be used. If none is required, say so.
- Number of Passes. Stipulate how many layers of weld metal to be deposited.
- Cleaning. State how the weld is to be cleaned between passes (may be only wire brushing) and what cleaning is required after completion. (Removal of flux, or brushing, or pickling.)
- Appearance of Finished Weld. Tell if the weld is to be flat or built-up or any other information required.
- 11. Post Heat and/or Quench. If required.
- Testing and Inspection. Define how the completed assembly will be tested and inspected.

JOINING ALUMINUM PROCESS PIPING

WELDING

Inert gas shielded arc welding, with tungsten electrodes is recommended for Aluminum pipe and fittings. Aluminum piping can also be welded with an oxy-acety-lene flame or with coated electrodes, but it is a much more difficult procedure requiring considerable experience to insure good welds. In addition to butt welding Speedline Fittings can be socket joined with Speedline Aligning Connectors or Speedline Belled End Fittings.

AC Current & Tungsten Electrodes. The most widely used method of welding Aluminum uses AC current with super-imposed high frequency. A tungsten electrode is used with Argon shielding gas. With this method the AC current helps to break up and separate the oxide, which is always present on Aluminum, so that the weld metal will "wet". The high frequency helps to initiate and stabilize the arc.

Shielding Gas. Argon gas should be the shielding medium and it should be controlled by an Argon flow-meter and regulator. It should leave the torch through a ceramic, rather than metal, cup so as not to short out the arc through the cup. A cup large enough to deliver the shielding gas with reasonably little turbulence should be used.

DC Current & Tungsten Electrodes. In some cases, because of availability of equipment, DC current with nonconsumable tungsten electrodes is used for welding Aluminum. When this process is used Helium should be the shielding gas. The electrode should be negative and the work positive (straight polarity). Since the welding current does not break up the oxide, as does AC current, the weld zone requires more pre-cleaning and inter-pass cleaning.

DC Current & Consumable Electrodes. Some fabricators use consumable electrode gas shielded welding on aluminum piping. This method uses DC current and reverse polarity (electrode positive) and Argon shielding. Sometimes a mixture of Argon and Helium is used. The filler metal is also the electrode and is fed through the welding torch or holder from a coil of wire. Though this process is very simple and easy to operate a specific procedure should be prepared before using this method of welding.

Cleaning & Degreasing. All pipe and fitting ends and all weld areas should be cleaned with a solvent to remove grease and dirt. This is usually sufficient cleaning. If brushing is required to remove heavy dirt be sure to use a stainless wire brush.

Alignment & Tacking. After proper alignment the joint should be tacked in four places. When welding is started, one pass around the pipe should be completed without interruption so as to avoid warping or distortion.

Filler Metal. Welds in Aluminum should not be made without the addition of filler metal. A filler metal alloy should be chosen to be compatible with the base metal. For non-consumable electrode welding a one eighth inch diameter clean filler wire is usually used.

Cleaning & Inspection. Welds should be cleaned between passes with a stainless wire brush. If there are any cracks, pinholes or undercuts they should be ground out to clean metal before depositing another pass. If such defects appear in the finished weld, they should be ground out and necessary repairs made.

BRAZING

The Aluminum alloys listed in this catalog may be readily brazed, but it should be done with special care since melting points of the base metals and the brazing alloys are relatively close.

Fit Tolerances. Typical fit tolerance of .010" to .025" should be maintained for good capillary action. Use Speedline Aligning Connectors (page 24) or Belled End Fittings (page 39) to expedite fit up and brazing procedure.

Clean & Flux. Aluminum pipe fittings and filler metal must be cleaned before fluxing and assembling. Usually a commercial solvent cleaner or degreaser can be used to remove dirt and grease. With parts that have been worked and shaped the cleaning should be done with

an etchant cleaner, such as a 5% sodium hydroxide dip followed by a rinse in cold water.

Filler Metal. Filler metals should be carefully chosen to suit the base metal and the piping service, remembering that the flow point of most aluminum brazing alloys is less than 200°F below that of the base metal. The filler metals used will usually fall in the A.W.S. B AI Si Classification. Fluxes should be those recommended by the manufacturer of the brazing alloy.

Heating. Any source that supplies the right amount of even heat will be satisfactory. An oxygen and acetylene torch is the most commonly used source of heat, and in this case a slightly reducing (excess acetylene) flame should be used. After brazing excess flux and flux residues should be removed.

SOLDERING

Aluminum calls for more care in choice of flux and alloy and more careful manipulation than most other piping materials.

Fit Tolerances. Typical fit tolerances of .005" to .015" should be maintained for good capillary action. Fit-up without difficulty can be accomplished with dimensionally accurate SPEEDLINE Aligning Connectors or Belled End Fittings.

Clean & Flux. All grease or dirt should be removed before flux is applied. If the O.D. of the pipe and the I.D. of the Aligning Connectors or Belled End Fittings are clean the flux can be applied without special preparation. Use a flux recommended by the manufacturer of the solder alloy. **Solder.** Choose a solder that is compatible with the piping material and with the service for which the piping is intended. Most of these will be alloys of Tin and Zinc or alloys of Cadmium and Zinc. Their melting points will be as low as 390°F and as high as 750°F.

Heating. Any heating device which will supply enough even heat will be satisfactory for soldering Aluminum. Acetylene and air torches are most commonly used. Remember that some Aluminum alloys melt as low as 1025°F and the others only up to 1225°F. Care must be taken not to melt the pipe and fittings. After soldering excess flux and flux residues should be removed.

ALLOWABLE INTERNAL WORKING PRESSURES FOR CORROSION RESISTANT PIPE AT VARIOUS TEMPERATURES

(Code also covers higher temperatures than included in these tables)

Code information cited in this section has been extracted from Petroleum Refinery Piping Code—USAS (ASA) B31.3—1966, a section of the American Standard Code for Pressure Piping published by the American Society of Mechanical Engineers, New York, N. Y.

The designer is cautioned that the Code is not a design handbook. The Code does not do away with the need for the engineer or for competent engineering judgment.

Excerpt from USAS (ASA) B31 Case No. 49—Chemical Process piping may be designed, fabricated, inspected and tested in accordance with USAS (ASA) B31.3—1966.

301.2.2 Internal Design Pressure

The piping component shall be designed for an internal pressure representing the most severe condition of coincident pressure and temperature expected in normal operation (including fluid head). The most severe condition of coincident pressure and temperature under normal operation shall be that condition which results in the greatest required pipe thickness and the highest flange rating.

304.1.1 General

(a) The required thickness of straight sections of pipe, considering pressure and mechanical, corrosion and erosion allowances, shall be determined in accordance with Equation 2.

$$t_{\rm m}=t+c.....(2)$$

- $t_{\rm m}=$ minimum required thickness, satisfying requirements for pressure, and mechanical, corrosion and erosion allowances, inches.
- t = pressure design thickness as calculated in accordance with 304.1.2 for internal pressure.

c = for internal pressure, the sum of the mechanical allowances (thread depth and groove depth), corrosion and erosion allowances, inches. (See 302.4).

P = internal design pressure, (see 301.2.2), psig.

 $D_o =$ outside diameter of pipe, inches.

S = applicable allowable stresses in accordance with 302.3.1 and Tables 302.13.1A and 302.3.1B (see Appendix A) psi.

E =longitudinal weld joint factor (see Table 302.4.3).

Y = coefficient having values as given in Table 304.1.1 for ductile ferrous materials, a value of 0.4 for ductile nonferrous materials, and a value of zero for brittle materials such as cast iron.

304.1.2 Straight Pipe Under Internal Pressure

(a) For metallic pipe, the internal pressure design thickness (t) shall be not less than calculated by the following equation 3, if t is less than $D_o/4$:

$$t = \frac{PD_o}{2(SE + PY)} - \dots (3)$$

In addition to above references, all other aspects of the Code should be considered before making any design decisions.

FOLLOWING TABLES WERE CALCULATED USING:

Equation (3) algebraically rearranged

$$P = \frac{2t}{D_o - 0.8t} \times SE$$

c=0 (design engineers should make proper allowances)

 $t=87\frac{1}{2}$ % of nominal pipe wall thickness

y = 0.4

Stainless Steels and Alloy 20Cb-3 Pipe

ALLOWABLE INTERNAL WORKING PRESSURE (psig)

	SCH 80 Seamless Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464)															
	TYPE	-425 ⁽¹⁾ TO					ME	TAL TE	MPERAT	URE - D	EGREE	S F				
	1112	100	200	300	400	500	600	650	700	750	800	850	900	950	1000	1050
½" SCH 5	304	2154	1910	1723	1565	1436	1335	1292	1242	1192	1149	1113	1070	1048	1012	976
	304L	1795	1752	1508	1264	1113	1034	1005	976	955	926	1000000	1	100000000		CAMPANA
	316	2154	2154	2053	2010	1975	1967	1960	1953	1939	1910	1896	1838	1738	1608	1400
	316L	1795	1795	1666	1379	1264	1163	1127	1084	1041	1012					
	20Cb-3	2585	2412	2332	2286	2229	2148	2114	2079	2045	2010					
½" SCH 10	304	2801	2483	2240	2035	1867	1736	1680	1615	1550	1494	1447	1391	1363	1316	1269
	304L	2334	2278	1960	1643	1447	1344	1307	1269	1242	1204					
	316	2801	2801	2670	2614	2567	2558	2548	2539	2520	2483	2464	2390	2259	2091	1820
	316L	2334	2334	2166	1792	1643	1512	1466	1410	1354	1316					
	20Cb-3	3361	3137	3032	2972	2898	2793	2748	2703	2659	2614				•	
½" SCH 40	304	3730	3308	2984	2711	2487	2313	2238	2151	2064	1990	1927	1853	1815	1753	1691
	304L	3109	3034	2611	2188	1927	1791	1741	1691	1654	1604					
	316	3730	3730	3556	3482	3420	3407	3395	3382	3357	3308	3283	3183	3009	2785	2425
	316L	3109	3109	2885	2387	2189	2014	1952	1878	1803	1753					
	20Cb-3	4477	4178	4039	3959	3860	3721	3661	3601	3541	3482					-

(1)Code case 1188-4 stipulates minimum temperature of -20°F for Alloy 20Cb-3

Listings continued on next page.

ALLOWABLE INTERNAL WORKING PRESSURE (psig)

SCH 5, 10 40 Welded Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464) SCH 80 Seamless Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464)

							METAL T	TEMPER	ATURE	- DEGRI	EES F					
	TYPE	-425(1) to 100	200	300	400	500	600	650	700	750	800	850	900	950	1000	1050
%" SCH 80	304	6564	5829	5252	4779	4376	4061	3921	3781	3641	3501	3396	3291	3186	3081	2976
	304L	5462	5357	4586	3851	3396	3151	3063	2976	2906	2836	3370	3271	3100	3001	2511
	316	6564	6564	6267	6127	6022	5987	5969	5952	5917	5864	5777	5602	5287	4901	427
	316L	5462	5462	5076	4201	3851	3554	3431	3308	3186	3081	0,,,	5002	520.	.,,,,,	15.0
	20Cb-3	7877	7352	7107	6967	6792	6547	6442	6337	6232	6127					
3/4"SCH 5	304	1703	1510	1362	1237	1135	1056	1022	982	942	908	880	846	829	800	772
	304L	1419	1385	1192	999	880	817	795	772	755	732					
	316	1703	1703	1623	1589	1561	1555	1549	1544	1532	1510	1498	1453	1373	1271	110
	316L	1419	1419	1317	1090	999	919	891	857	823	800					
	20Cb-3	2043	1907	1843	1807	1762	1698	1671	1643	1616	1589					
34" SCH 10	304	2208	1958	1766	1604	1472	1369	1325	1273	1222	1178	1141	1097	1075	1038	100
	304L	1840	1796	1546	1295	1141	1060	1030	1001	979	949	103-114				
	316	2208	2208	2105	2061	2024	2017	2009	2002	1987	1958	1943	1884	1781	1649	143
	316L	1840	1840	1708	1413	1295	1192	1156	1111	1067	1038					
	20Cb-3	2650	2473	2391	2343	2285	2202	2167	2131	2096	2061					
34" SCH 40	304	3059	2712	2447	2223	2039	1896	1835	1764	1692	1631	1580	1519	1488	1437	138
	304L	2549	2488	2141	1794	1580	1468	1427	1387	1356	1315	702.039.00	2000	1212120	12020700	(SERVICE)
	316	3059	3059	2916	2855	2804	2793	2783	2773	2753	2712	2691	2610	2467	2284	198
	316L	2549	2549	2365	1957	1794	1652	1601	1539	1478	1437					
1/// DOTT 00	20СЬ-3	3670	3426	3311	3246	3165	3050	3001	2952	2904	2855	2500	2604	2500	2522	0.40
¾" SCH 80	304	5374	4772	4299	3912	3583	3325	3210	3095	2981	2866	2780	2694	2608	2522	2430
	304L 316	4471 5374	4385 5374	3754 5130	3153 5016	2780 4930	2579 4901	2508 4887	2436 4872	2379 4844	2321 4801	4729	1506	4328	4012	240
	316L	4471	4471	4156	3439	3153	2909	2809	2708	2608	2522	4129	4586	4328	4012	349
	20СЬ-3	6449	6019	5818	5703	5560	5359	5273	5187	5101	5016					
1" SCH 5	304	1347	1195	1078	979	898	835	808	777	746	719	696	669	656	633	611
	304L	1123	1096	943	791	696	647	629	611	597	579	0,0	007	050	000	01.
	316	1347	1347	1285	1258	1235	1231	1226	1222	1213	1195	1186	1150	1087	1006	876
	316L	1123	1123	1042	862	791	728	705	678	651	633	1100	1100	100,	1000	
	20СЪ-3	1617	1509	1459	1430	1394	1344	1322	1301	1279	1258					
1" SCH 10	304	2296	2039	1840	1671	1533	1426	1380	1326	1272	1226	1188	1142	1119	1081	1042
	304L	1916	1870	1610	1349	1188	1104	1073	1042	1019	989					
	316	2300	2300	2192	2146	2108	2100	2093	2085	2070	2039	2024	1962	1855	1717	149
	316L	1916	1916	1778	1472	1349	1242	1203	1157	1111	1081					
	20Cb-3	2759	2575	2490	2441	2379	2293	2257	2220	2183	2146					
1" SCH 40	304	2847	2524	2278	2069	1898	1765	1708	1642	1575	1518	1471_	1414	1386	1338	129
	304L	2373	2316	1993	1670	1471	1367	1329	1291	1262	1224					
	316	2847	2847	2714	2657	2610	2600	2591	2581	2562	2524	2505	2429	2297	2126	185
	316L	2373	2373	2202	1822	1670	1537	1490	1433	1376	1338					
	20Cb-3	3416	3189	3082	3022	2946	2839	2794	2748	2703	2657					
1" SCH 80	304	4952	4397	3962	3605	3301	3064	2958	2852	2747	2641	2562	2483	2403	2324	224
	304L	4120	4041	3460	2905	2562	2377	2311	2245	2192	2139			2000	2505	
	316	4952	4952	4727	4622	4543	4516	4503	4490	4463	4424	4358	4226	3988	3697	322
	316L	4120	4120	3829	3169	2905	2681	2588	2496	2403	2324					
14" SCH 5	20Cb-3	5942	5546	5361	5256	5124	4939	4859	4780	4701	4622	647	526	616	498	40
174 SCH 3	304 304L	1059 883	939 862	848 742	770 622	706 547	657 509	636 494	611 480	586 470	565 456	547	526	516	498	480
12	316	1059	1059	1010	989	971	968	964	961	954	939	932	904	855	791	689
	316L	883	883	819	678	622	572	554	533	512	498				***	
	20Cb-3	1271	1187	1147	1124	1096	1057	1040	1023	1006	989					
1¼"SCH 10		1799	1595	1439	1307	1199	1115	1079	1037	995	959	929	893	875	845	81
	304L	1499	1463	1259	1055	929	863	839	815	797	773		Append CS U			
	316	1799	1799	1715	1679	1649	1643	1637	1631	1619	1595	1583	1535	1451	1343	116
	316L	1499	1499	1391	1151	1055	971	941	905	869	845					(10000000
	20Cb-3	2158	2014	1947	1909	1861	1794	1765	1736	1707	1679		I	1	1	I

⁽¹⁾Code case 1188-4 stipulates minimum temperature of $-20^{\rm o}{\rm F}$ for Alloy 20Cb-3

SCH 5, 10, 40 Welded Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464) SCH 80 Seamless Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464)

	TYPE						MI	ETAL TE	MPERA	TURE - I	DEGREES	F				
		-425(1) to 100	200	300	400	500	600	650	700	750	800	850	900	950	1000	1050
1¼" SCH 40	304	2343	2077	1874	1703	1562	1453	1406	1351	1296	1250	1211	1164	1140	1101	1062
	304L	1953	1906	1640	1375	1211	1125	1093	1062	1039	1007	1.5555	(505.6)		0.000	
	316	2343	2343	2234	2187	2148	2140	2132	2124	2109	2077	2062	1999	1890	1749	1523
70	316L	1953	1953	1812	1500	1375	1265	1226	1179	1132	1101					
	20СЬ-3	2812	2624	2537	2487	2424	2337	2299	2262	2224	2187					
14" SCH 80	304	4104	3645	3284	2988	2736	2539	2452	2364	2277	2189	2123	2058	1992	1926	1861
	304L	3415	3349	2868	2408	2123	1970	1915	1861	1817	1773	1.0000000	I ENGRAPERS	100000000	100000000	0.000
	316	4104	4104	3918	3831	3765	3743	3732	3721	3699	3667	3612	3502	3305	3065	2671
	316L	3415	3415	3174	2627	2408	2221	2145	2069	1992	1926					100000
	20Cb-3	4925	4597	4444	4356	4247	4093	4028	3962	3896	3831			_		
1½" SCH 5	304	922	818	738	670	615	572	553	532	510	492	477	458	449	434	418
	304L	769	750	646	541	477	443	430	418	409	397					
	316	922	922	879	861	845	842	839	836	830	818	812	787	744	689	600
	316L	769	769	713	590	541	498	483	464	446	434		N15-725	V.01-10		Services
	20Сь-3	1107	1033	999	979	954	920	905	890	876	861					
1½" SCH 10	304	1563	1386	1250	1136	1042	970	938	901	865	834	808	776	761	735	709
	304L	1303	1271	1094	917	808	750	729	709	693	672					
	316	1563	1563	1490	1459	1433	1428	1422	1417	1407	1386	1375	1334	1261	1167	1016
	316L	1303	1303	1209	1000	917	844	818	787	755	735					
	20Сь-3	1876	1751	1692	1659	1617	1559	1534	1509	1484	1459					
1½" SCH 40	304	2120	1879	1696	1540	1413	1314	1272	1222	1173	1130	1095	1053	1031	996	961
	304L	1766	1724	1484	1243	1095	1017	989	961	940	911					
	316	2120	2120	2021	1978	1943	1936	1929	1922	1908	1879	1865	1809	1710	1583	1378
	316L	1766	1766	1639	1356	1243	1145	1109	1067	1024	996					
	20Сь-3	2543	2374	2295	2249	2193	2114	2080	2046	2012	1978					
1½" SCH 80	304	3729	3312	2984	2715	2486	2307	2228	2148	2069	1989	1929	1870	1810	1750	1691
	304L	3103	3043	2606	2188	1929	1790	1740	1691	1651	1611		3000000	\$6,0096,0025	22000000	Technological Section
	316	3729	3729	3560	3481	3421	3401	3391	3381	3361	3332	3282	3182	3003	2785	2427
	316L	3103	3103	2884	2387	2188	2019	1949	1880	1810	1750					
	20Сь-3	4475	4177	4038	3958	3859	3719	3660	3600	3540	3481					
2" SCH 5	304	734	651	587	534	490	455	441	423	406	392	379	365	357	345	333
	304L	612	597	514	431	379	352	343	333	326	316					
	316	734	734	700	685	673	671	668	666	661	651	646	627	592	548	477
	316L	612	612	568	470	431	396	384	370	355	345		7000			
	20СЬ-3	881	822	795	779	760	732	721	709	697	685					
2" SCH 10	304	1240	1099	992	901	826	769	744	715	686	661	640	616	603	583	562
	304L	1033	1008	868	727	640	595	578	562	550	533		2			
	316	1240	1240	1182	1157	1136	1132	1128	1124	1116	1099	1091	1058	1000	926	806
1	316L	1033	1033	959	793	727	669	649	624	599	583					
	20Cb-3	1486	1388	1342	1316	1283	1236	1216	1197	1177	1157					
2" SCH 40	304	1787	1584	1429	1298	1191	1108	1072	1030	989	953	923	887	869	840	810
	304L	1489	1453	1251	1048	923	858	834	810	792	768			12-20-2-2-		V
	316	1787	1787	1703	1667	1638	1632	1626	1620	1608	1584	1572	1524	1441	1334	1161
	316L	1489	1489	1382	1143	1048	965	935	899	863	840					
	20СЬ-3	2144	2001	1934	1896	1848	1782	1753	1725	1696	1667				12	
2" SCH 80	304	3223	2862	2579	2346	2149	1994	1925	1857	1788	1719	1667	1616	1564	1513	1461
	304L	2682	2630	2252	1891	1667	1547	1504	1461	1427	1392					
	316	3223	3223	3077	3008	2957	2939	2931	2922	2905	2879	2836	2750	2596	2407	2097
	316L	2682	2682	2493	2063	1891	1745	1685	1624	1564	1513					
	20Cb-3	3868	3610	3490	3421	3335	3215	3163	3111	3060	3008					
2½" SCH 5	304	777	689	622	565	518	482	466	448	430	415	402	386	378	365	352
	304L	648	632	544	456	402	373	363	352	345	334					
	316	777	777	741	726	713	710	707	705	700	689	684	663	627	580	505
	316L	648	648	601	498	456	420	407	391	376	365				1 8	
-	20Cb-3	933	871	842	825	804	775	763	750	738	726				1	

(1)Code case 1188-4 stipulates minimum temperature of -20°F for Alloy 20Cb-3

Listings continued on next page.

SCH 5, 10, 40 Welded Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464) SCH 80 Seamless Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464)

			0011 00		- Common	J Dicci I	12.20(19.1			20Сь-3 А						
	TYPE	107(1)					META	L TEMP	ERATU	RE - DE	GREES F					
		-425(1) to 100	200	300	400	500	600	650	700	750	800	850	900	950	1000	1050
2½" SCH 10	304	1129	1001	903	820	752	700	677	651	624	602	583	561	549	530	512
2	304L	941	918	790	662	583	542	527	512	500	485					
	316	1129	1129	1076	1053	1035	1031	1027	1023	1016	1001	993	963	910	843	734
	316L	941	941	873	722	662	609	591	568	545	530					
2½" SCH 40	20Cb-3 304	1354 1953	1264 1732	1222 1562	1198 1419	1168	1126 1211	1108	1089 1126	1071	1053 1042	1009	970	950	918	885
272 SCH 40	304L	1628	1588	1367	1146	1009	937	911	885	866	840	1009	970	930	910	003
	316	1953	1953	1862	1823	1790	1784	1777	1771	1758	1732	1719	1667	1575	1458	1269
	316L	1628	1628	1510	1250	1146	1055	1022	983	944	918	1715	1007	13/3	1430	1207
	20Cb-3	2344	2187	2114	2073	2021	1948	1917	1885	1854	1823					
2½" SCH 80	304	3384	3005	2708	2464	2256	2094	2022	1949	1877	1805	1751	1697	1643	1588	1534
	304L	2816	2762	2365	1986	1751	1625	1579	1534	1498	1462			44314375211		
	316	3384	3384	3231	3159	3105	3087	3078	3069	3050	3023	2978	2888	2726	2527	2202
	316L	2816	2816	2617	2166	1986	1832	1769	1706	1643	1588					
	20Cb-3	4061	3791	3664	3592	3502	3375	3321	3267	3213	3159					
3" SCH 5	304	636	564	509	462	424	395	382	367	352	339	329	316	310	299	288
1	304L	530	518	445	373	329	305	297	288	282	274					
	316	636	636	607	594	583	581	579	577	573	564	560	543	513	475	414
	316L	530	530	492	407	373	344	333	320	308	299					
3" SCH 10	20Cb-3 304	764	713 818	689	675 670	658	635 572	624 553	532	604 510	594 492	476	458	449	433	418
3 SCH 10	304L	922 768	750	738 645	541	476	443	430	418	409	396	470	436	443	433	410
	316	922	922	879	861	845	842	839	836	830	818	811	787	744	688	599
	316L	768	768	713	590	541	498	483	464	446	433	011	,0,	7.33	000	377
	20Cb-3	1106	1033	998	979	954	920	905	890	875	861					
3" SCH 40	304	1694	1502	1355	1231	1129	1050	1016	977	937	903	875	841	824	796	768
00.000.000.000	304L	1411	1377	1185	994	875	813	790	768	751	728	233334		and the same	38.20.00	
	316	1694	1694	1614	1581	1552	1547	1541	1535	1524	1502	1490	1445	1366	1264	1101
	316L	1411	1411	1310	1084	994	914	886	852	819	796					
	20Cb-3	2032	1897	1833	1797	1752	1689	1662	1635	1608	1581					
3" SCH 80	304	2987	2652	2390	2174	1991	1848	1784	1720	1657	1593	1545	1497	1450	1402	1354
	304L	2485	2437	2087	1752	1545	1434	1394	1354	1322	1290	0.0000000000000000000000000000000000000		25000000	Services*	0.000.002
	316	2987	2987	2851	2788	2740	2724	2716	2708	2692	2668	2628	2549	2405	2230	1943
	316L	2485	2485	2310	1912	1752	1617	1561	1505	1450	1402					
4" SCH 5	20Cb-3 304	3584 493	3345 437	3234 394	3170 358	3090 329	2979 306	2931 296	2883	2836 273	2788 263	255	245	240	232	224
4 SCH 5							237	230	224	219	212	255_	243	240	232	224
	304L 316	411 493	401 493	345 470	289 460	255 452	450	449	447	444	437	434	421	398	368	320
	316L	411	411	381	316	289	266	258	248	238	232	434	721	370	500	320
	20Cb-3	592	552	534	523	510	492	484	476	468	460					
4" SCH 10	304	713	632	571	518	476	442	428	411	395	380	369	354	347	335	323
(() () () () () () () () () (304L	594	580	499	418	369	342	333	323	316	307	15755	- E300	88/862		10.77
	316	713	713	680	666	654	651	649	647	642	632	628	609	575	533	464
	316L	594	594	552	456	418	385	373	359	345	335					
	20СЬ-3	856	799	772	757	738	711	700	689	677	666					
4" SCH 40	304	1433	1270	1146	1041	955	888	860	826	793	764	740	712	697	673	650
	304L	1194	1165	1003	841	740	688	669	650	635	616	15,500000	Spearet	100 700 40004	September 1	2000
	316	1433	1433	1366	1337	1313	1309	1304	1299	1290	1270	1261	1223	1156	1070	931
	316L	1194	1194	1108	917	841	774	750	721	693	673					
AUGOTTOO	20Cb-3	1719	1605	1551	1521	1482	1429	1406	1383	1360	1337	1242	1201	1250	1210	1176
4" SCH 80	304 304F	2595	2304	2076	1889	1730	1605	1550	1495	1439	1384	1342	1301	1259	1218	1176
* 1	304L	2159 2595	2118	1813	1522 2422	1342 2380	1246 2367	1211 2360	1176 2353	1149 2339	1121 2318	2284	2214	2090	1938	1688
	316 316L	2159	2595 2159	2477 2007	1661	1522	1405	1356	1308	1259	1218	2204	2214	2090	1936	1000
	20Cb-3	3114	2906	2810	2754	2685	2588	2547	2505	2464	2422					
	2000-3	3114	2500	2010	2134	2003	2300	2541	2505	2404	2422					

(1)Code case 1188-4 stipulates minimum temperature of -20°F for Alloy 20Cb-3

SCH 5, 10, 40 Welded Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464) SCH 80 Seamless Stainless Steel Pipe ASTM - A312 (Alloy 20Cb-3 ASTM-B464)

	CONTRACTOR OF THE PARTY OF THE						METAL	TEMPE	RATURE	- DEGR	EES F			_		
	TYPE	-425(1) to 100	200	300	400	500	600	650	700	750	800	850	900	950	1000	1050
6" SCH 5	304	435	386	348	316	290	270	261	251	241	232	225	216	212	205	197
4	304L	363	354	305	255	225	209	203	197	193	187					
	316	435	435	415	406	399	397	396	395	392	386	383	371	351	325	283
	316L	363	363	337	278	255	235	228	219	210	205					
	20СЬ-3	522	487	471	462	450	434	427	420	413	406					
6" SCH 10	304	537	477	430	391	358	333	322	310	297	287	278	270	262	253	244
	304L	448	437	376	315	278	258	251	244	238	231					
	316	537	537	512	502	493	491	489	487	484	477	473	459	434	401	349
	316L	448	448	416	344	315	290	281	271	260	253					
	20Cb-3	645	602	582	570	556	536	527	519	510	502					
6" SCH 40	304	1143	1014	915	831	762	709	686	659	633	610	591	568	556	537	518
	304L	953	930	800	671	591	549	534	518	507	492					
	316	1143	1143	1090	1067	1048	1044	1040	1037	1029	1014	1006	976	922	854	743
	316L	953	953	884	732	671	617	598	575	553	537					
	20Сь-3	1372	1280	1238	1213	1183	1140	1122	1104	1085	1067					
6" SCH 80	304	2243	1991	1794	1633	1495	1387	1340	1292	1244	1196	1160	1124	1088	1052	1017
	304L	1866	1830	1567	1316	1160	1076	1047	1017	993	969					
	316	2243	2243	2141	2093	2057	2045	2039	2033	2021	2003	1973	1914	1806	1674	1459
	316L	1866	1866	1734	1435	1316	1214	1172	1130	1088	1052					
	20Cb-3	2691	2512	2428	2380	2320	2237	2201	2165	2129	2093					

(1)Code case 1188-4 stipulates minimum temperature of -20°F for Alloy 20Cb-3

INTERNAL WORKING PRESSURE LISTINGS ARE CONTINUED ON FOLLOWING PAGES Aluminum Page 74 Monel, Nickel, Inconel Pages 75-76

THE EXTRA LENGTH FEATURE OF SPEEDLINE FITTINGS ADDS COST-SAVING VERSATILITY TO PROCESS PIPING INSTALLATIONS

ALLOWABLE INTERNAL WORKING PRESSURE (psig) Seamless Aluminum Pipe ASTM B241

(Welded figures are for seamless pipe after welding into system)

PIPE		ME	ETAL T	ЕМРЕН	RATUR	E – DE	GREES	F	PIPE		МЕ	TAL T	EMPER	ATURI	E – DE	GREES	F
SIZE I.P.S.	GRADE	-325 to 100	150	200	250	300	350	400	SIZE I.P.S.	GRADE	-325 to 100	150	200	250	300	350	400
½" Sch 10	3003-H18	1260	1195	1130	1064	980	821	653	2" Sch 10	3003-H18	558	529	500	471	434	364	289
	3003-H112 6061-T6 6061-T6	672 1774	607 1718	560 1680	523 1587	467 1344	1046	355 747		3003-H112 6061-T6	298 785	269 760	248 745	231 702	207 595	182 463	157 331
	Welded 6063-T6	1120 1400	1102 1326	1064 1270	1008 1139	934 840	784 579	597 373		6061-T6 Welded 6063-T6	496 620	488 587	471 562	446 504	413 372	347 256	264 165
-	6063-T6 Welded	793	784	747	709	672	513	355		6063-T6 Welded	351	347	331	314	298	236	157
½" Sch 40	3003-H18 3003-H112	1679 895	1592 808	1505 746	1418 696	1306 622	1094 547	870 473	2" Sch 40	3003-H18 3003-H112	804 429	762 387	721 357	679 333	625 298	524 262	417 226
	6061-T6 6061-T6	2363	2288	2238	2114	1791	1393	995		6061-T6 6061-T6	1131	1096	1072	1012	858	667	476
	Welded 6063-T6 6063-T6	1492 1865	1467 1766	1418 1691	1343 1517	1244 1119	1045 771	796 497		Welded 6063-T6	715 893	703 846	679 810	643 727	596 536	500 369	381 238
2/4/5/1-10	Welded	1057	1045	995	945	895	684	473		6063-T6 Welded	506	500	476	453	429	328	226
34" Sch 10	3003-H18 3003-H112 6061-T6	994 530 1398	942 478 1354	891 442 1325	839 412 1251	773 368 1060	648 324 824	515 280 589	2½" Sch 10	3003-H18 3003-H112 6061-T6	508 271 715	482 245 692	455 226 677	429 211 640	395 188 542	331 166 421	263 143 301
	6061-T6 Welded	883	868	839	795	736	618	471		6061-T6 Welded	451	444	429	406	376	316	241
	6063-T6 6063-T6 Welded	626	618	1001	898 559	530	456	294		6063-T6 6063-T6 Welded	564 320	534	512	459	339	233	150
¾" Sch 40	3003-H18 3003-H112	1376 734	1305	1234	1162	1070	897	714	2½" Sch 40	3003-Н18	879	316 833	788	286 742	684	573	456
	6061-T6 6061-T6	1937	663 1876	612 1835	571 1733	510 1468	449 1142	387 816		3003-H112 6061-T6 6061-T6	469 1237	423 1198	391 1172	365 1107	326 937	286 729	247 521
	Welded 6063-T6	1223 1529	1203 1448	1162 1387	1101 1244	1020 918	856 632	652 408		Welded 6063-T6	781 977	768 924	742 885	703 794	651 586	547 404	417 260
	6063-T6 Welded	867	856	816	775	734	561	387		6063-T6 Welded	553	547	521	495	469	358	247
1" Sch 10	3003-H18 3003-H112 6061-T6 6061-T6	1035 552 1456	981 498 1410	927 460 1380	874 429 1303	805 383 1104	675 337 858	537 291 613	3" Sch 10	3003-H18 3003-H112 6061-T6 6061-T6	415 221 584	393 200 566	372 184 553	350 172 522	323 154 443	270 135 344	215 117 246
	Welded 6063-T6 6063-T6	920 1150	904 1088	874 1042	828 935	767 690	644 475	491 307		Welded 6063-T6 6063-T6	369 461	363 436	350 418	332 375	307 277	258 191	197 123
1" Sch 40	Welded 3003-H18	652 1281	1215	613 1148	583 1082	552 996	422 835	291 664	3" Sch 40	Welded 3003-H18	762	258 723	246 683	644	593	169 497	395
	3003-H112 6061-T6 6061-T6	683 1803	617 1746	569 1708	531 1613	475 1367	418 1063	361 759		3003-H112 6061-T6 6061-T6	406 1073	367 1039	339 1016	316 960	282 813	248 632	215 452
	Welded 6063-T6 6063-T6	1139 1424	1120 1348	1082 1291	1025 1158	949 854	797 588	607 380		Welded 6063-T6 6063-T6	677 847	666 802	644 768	610 689	565 508	474 350	361 226
1¼" Sch 10	Welded 3003-H18	807 809	797 767	759 725	721 683	683 629	522 528	361 420	4" C-1-10	Welded	480	474	452	429	406	310	215
174 BCH 10	3003-H112 6061-T6 6061-T6	432 1139	390 1103	360 1079	336 1019	300 863	264 671	228 480	4" Sch 10	3003-H18 3003-H112 6061-T6 6061-T6	321 171 452	304 155 437	288 143 428	271 133 404	250 119 342	209 105 266	166 90 190
	Welded 6063-T6 6063-T6	719 899	707 851	683 815	647 731	600 540	504 372	384 240		Welded 6063-T6	285 357	281 338	271 323	257 200	238 214	200 147	152 95
11/// 5-1-40	Welded	510	504	480	456	432	330	228		6063-T6 Welded	202	200	190	181	171	131	90
1¼" Sch 40	3003-H18 3003-H112 6061-T6	1054 562 1484	1000 508 1437	945 469 1406	890 437 1328	820 391 1125	687 344 875	547 297 625	4" Sch 40	3003-H18 3003-H112 6061-T6	645 344 907	611 310 879	578 287 860	544 267 812	501 239 688	420 210 535	334 181 382
	6061-T6 Welded 6063-T6	937 1172	922 1109	890 1062	843 953	781 703	656 484	500 312		6061-T6 Welded 6063-T6	573 716	564 678	544 650	516 583	478 430	401 296	306 191
	6063-T6 Welded	664	656	625	594	562	430	297		6063-T6 Welded	406	401	382	363	344	263	181
1½" Sch 10	3003-H18 3003-H112 6061-T6 6061-T6	703 375 990	667 339 959	630 313 938	594 292 886	547 261 750	458 229 584	365 198 417	6" Sch 10	3003-H18 3003-H112 6061-T6 6061-T6	242 129 340	229 116 330	217 107 322	204 100 305	188 90 258	158 79 201	125 68 143
	Welded 6063-T6 6063-T6	625 782	615 740	594 709	563 636	521 469	438 323	333 208		Welded 6063-T6 6063-T6	215 269	211 254	204 244	193 219	179 161	150 111	115 72
1½" Sch 40	Welded 3003-H18	954	438 904	417 855	396 805	375 742	287 622	198 495	611 0-1-40	Welded	152	150	143	136	129 4 0 0	99	68
1/2 SCH 40	3003-H112 6061-T6 6061-T6	509 1342	459 1300	424 1272	396 1201	353 1017	311 791	268 565	6" Sch 40	3003-H18 3003-H112 6061-T6 6061-T6	514 274 724	488 248 701	461 229 686	434 213 648	191 549	335 168 427	267 145 305
	Welded 6063-T6 6063-T6	848 1060	834 1003	805 961	763 862	707 636	593 438	452 283		Welded 6063-T6 6063-T6	457 572	450 541	434 518	412 465	381 343	320 236	244 152
	Welded	601	593	565	537	509	389	268		Welded	324	320	305	290	274	210	145

Seamless Nickel and Nickel Base Alloy Pipe - ASTM B161, B165 and B167 (Nickel 200 - Monel 400 - Inconel 600) METAL TEMPERATURE - DEGREES F Pipe GRADE -325 to 100 I.P.S. 1/2" SCH 10 Nickel Monel Inconel 1/2" SCH 40 Nickel Monel Inconel 34" SCH 10 Nickel Monel Inconel 34" SCH 40 Nickel Monel Inconel 1" SCH 10 Nickel Monel Inconel 1" SCH 40 Nickel Monel Inconel 11/4" SCH 10 Nickel Monel Inconel 11/4" SCH 40 Nickel Monel Inconel 11/2" SCH 10 Nickel Monel Inconel 11/2" SCH 40 Nickel Monel Inconel 2" SCH 10 Nickel Monel Inconel 2" SCH 40 Nickel Monel Inconel Nickel 21/2" SCH 10 Monel Inconel 21/2" SCH 40 Nickel Monel Inconel 3" SCH 10 Nickel Monel Inconel 3" SCH 40 Nickel

Monel

Inconel

Listings continued on next page.

			Se	amless l	Nickel a					STM B		65 and	B167					
Pipe Size							N	METAL	ТЕМРЕ	RATUI	RE – D	EGREE	S F					
I.P.S.	GRADE	-325 to 100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
4" SCH 10	Nickel	476	476	476	476	476	476	476	476	476	476							
	Monel	832	808	785	761	737	718	704	699	699	699	699	699	699	697	689	594	380
4	Inconel	951	918	884	865	856	856	856	856	856	856	856	846	832	820	808	789	761
4" SCH 40	Nickel	955	955	955	955	955	955	955	955	955	955							
	Monel	1672	1624	1576	1528	1481	1442	1414	1404	1404	1404	1404	1404	1404	1399	1385	1194	764
	Inconel	1910	1844	1777	1738	1719	1719	1719	1719	1719	1719	1719	1700	1672	1648	1624	1586	1528
6" SCH 10	Nickel	287	287	287	287	287	287	287	287	287	287							
	Monel	595	559	523	505	487	480	473	471	469	469	469	469	469	469	469	376	287
	Inconel	595	588	580	570	559	554	548	543	537	536	534	530	527	520	516	507	498
6" SCH 40	Nickel	610	610	610	610	610	610	610	610	610	610							
	Monel	1265	1189	1113	1075	1037	1021	1006	1002	998	998	998	998	998	998	998	800	610
	Inconel	1265	1250	1235	1212	1189	1178	1166	1155	1143	1139	1136	1128	1120	1105	1098	1079	1059

STAINLESS STEEL PIPE LINES

ALLOWABLE SPAN AND DRAINAGE

The allowable span of a pipe line is affected by many factors, such as:

- Stresses which have been proved safe in various alloys at various working temperatures.
- Dimensions of cross section of pipe, usually expressed in Section Modulus.
- Bending force, including weights of metal pipe, fluid or gas carried, insulation and weatherproofing, together with lateral forces such as wind load. Included, also, should be non-uniform loads such as flanges, valves, fittings or branch lines between supports.

The following charts are offered as a means of establishing quickly the answers to a few hundred of the more likely combinations of these factors. Chart answers are each limited to the specific conditions stated thereon and supplemented under Specifications below. Innumerable additional possible variations to the chart answers are covered under the following sections on Variations.

SPAN EQUATION

For the user who may be interested in the basis of the chart figures in order that he may adapt them to some special use, the fundamental equation for the chart is:

$$L = C \sqrt{\frac{SZ}{W}}$$

Where:

- L = Length of span in feet, shown at bottom of charts.
- C = Constant: Intermediate between "free" span and "continuous" beam. Derived from standard beam formulae at 25% of Code Stress as apportioned to bendload. Here C = .447.
- S = Stress recommended by governing code: ASA B31.3-1966.
- Z = Section modulus of pipe, calculable from ASA B36.19-1965.
- W = Weight or resultant force in lbs. per foot of pipe line in operation, including metal, fluid, insulation, weatherproofing and wind.

The spacing of temperature lines does not follow a smooth logarithmic sequence, nor does one set of curves appear to be exactly consistent with another. This probably is due to the cumulative effect of weights and wind combined with arbitrarily chosen points to shift from one commercial thickness of insulation to another.

SPECIFICATIONS

Pipe, dimensions; outside diameter and wall thickness; ASA Code B36.19-1965 "American Standard for Stainless Steel Pipe." Table I.

- Pipe, allowable stresses; ASA Code B31.3-1966 "Code for Pressure Piping—Petroleum Refinery Piping" Appendix A Electric Fusion Welded Pipe—TP 304 ASTM A-312.
- Insulation; a conservative composite of current practices. The weight is assumed at 20# per cu. ft. gross, plus weatherproofing. Latter assumed as 2 plies of 30# roofing felt.

Wind; 25# per square foot of projected area.

Span; intermediate between pure "free" span and pure "continuous" beam.

Fluids; "Air, Gas and Vapor Lines"; calculated as empty pipe. "Liquid Lines"; liquid same weight as cold water (62.42#/cu. ft.).

Corrosion; assumed none.

Expansion Stress; assumed free of stress.

Concentrated Loads; valves, fittings, flanges, are not included in chart figures.

Gas Line Testing; no provision on charts for overload by bending due to weight of water during hydrostatic test.

VARIATIONS

Having set up a system for solution of a typical group of problems, the question immediately arises as to how much range of variation there will be in allowable span, if one or more of the factors is changed. If large amounts of money be involved, a complete recalculation may be justified. The outline for this is given above under the heading of SPAN EQUATION. For most cases a judgment factor applied to the chart answer will be adequate. For instance, to follow the order of the preceding SPECIFICATIONS—

Pipe Dimensions

For odd size tubing interpolate between nearest pipe sizes and weights shown.

Pipe Allowable Stresses

These may be varied by:

- (a) Type of seam affects allowable span, thus: Seamless Pipe—apply factor 112%.
- (b) Alloy, for the various alloys shown in Appendix A, ASA B31.3-1966 Electric Fusion Welded Pipe, the appropriate stresses are noted therein. Type 316 is something of a premium grade and, at 100°F, is no stronger than Type 304. However, at 1500°F, Type 316 is about₁twice as strong. Hence, an allowable span factor of 140% of that shown on the accompanying charts is appropriate for Type 316 at 1500°F. Premium alloys are sometimes used to avoid contamination of product. Also, they sometimes have lower corrosion rates for selected services, thus maintaining their physical

AIR, GAS or VAPOR LINES

INDOORS

Maximum Allowable Span Between Supports

5

EXAMPLE:

Schedule 5 pipe, carrying air indoors, with insulated covering, temperature 400°F, diameter pipe 6" Read across 6" diameter coordinate to 400°F temperature line, then down to L

ANSWER: 22 1/2 feet

SCHEDULE

ANSWER: 22 feet

SCHEDULE

40

ANSWER: 25 feet

AIR, GAS or VAPOR LINES

OUTDOORS

Maximum Allowable Span Between Supports

5

EXAMPLE:

Schedule 5 pipe, carrying air outdoors, with insulated covering, temperature 400°F, diameter pipe 6" Read across 6" diameter coordinate to 400°F temperature line, then down to L

ANSWER: 16 feet

SCHEDULE

ANSWER: 18 feet

SCHEDULE

40

ANSWER: 22 feet

LIQUID FILLED LINES

INDOORS

Maximum Allowable Span Between Supports

5

EXAMPLE:

Schedule 5 pipe, carrying liquid indoors, with insulated covering, temperature 400°F, diameter pipe 6"—
Read across 6" diameter coordinate to 400°F temperature line, then down to L

ANSWER: 17 feet

SCHEDULE

ANSWER: 17 feet

SCHEDULE

40

ANSWER: 20 feet

LIQUID FILLED LINES

OUTDOORS

Maximum Allowable Span Between Supports

5

EXAMPLE:

Schedule 5 pipe, carrying liquid outdoors, with insulated covering, temperature 400°F, diameter pipe 6"—
Read across 6" diameter coordinate to 400°F temperature line, then down to L

ANSWER: 131/2 feet

SCHEDULE

ANSWER: 15 feet

SCHEDULE

ANSWER: 18 feet

strength against bursting or bending. The choice of supporting span would be on the basis of the chosen alloy after corrosion.

(c) Codes. Other codes are extant and still others are in preparation. In such cases, the allowable span will vary as the square root of the allowable stress.

Insulation

- (a) Density: fibre glass insulation is sometimes used on lines at less than 350°F. It is much lighter. With gas lines at 350°F indoors this could increase the span on ½" pipe to about 116%, and on 8" pipe to 110%. The gain on outdoor liquid lines would be less.
- (b) **Thickness:** The present range is from %" on ½"-1" pipe at 100°F to 5" on 8" pipe at 1500°F. To modify this 30% might affect the smaller line, if gas, as much as 10%, or the larger line, if liquid, as little as 5% on the span. Again, the effect on outdoor lines would be less.

Beam

In the rare cases of pure "free" beam, the span would be 89% of the chart figure. Likewise, a pure "continuous" beam would stand 111% of the chart figure. Thus, in specific cases, a judgment factor may be applied within this range. In any case, the chart figure with such modifications as are discussed here is the maximum allowable span. It should not be exceeded without thorough study.

Fluids

Very few, if any, of the common gases or vapors are heavy enough to noticeably affect our problem. Most liquids fall within the range of 45 lbs. to 90 lbs./cu. ft. On bare Schedule 5 pipe, indoors, at 100°F, a slurry at 90#/cu. ft. would call for shorter span. On ½" pipe this would be 95% of the chart figure. On 8" pipe this would be 87% of the chart figure.

Conversely with a very light liquid at 30#/cu. ft. a longer span could be used. On 1/2" pipe this would be 1031/2% of the chart figure. On 8" pipe this would be 111% of the chart figure. On lines having thicker walls, insulation or wind load, the variation would be less.

Corrosion

Corrosion effects vary widely and call for detailed consideration in each instance. The usual corrosion allowance makes the pipe heavier at the start, meanwhile corrosion may be limited to the lower fibers, thus retaining most of the weight but greatly reducing the bending strength of the pipe. Furthermore, very heavy scale equal to the weight of all the metal is not uncommon.

In any case, the allowable span will be dictated by the strength of the pipe used, at the thickness expected at the end of its useful life. The most convincing approach is a successful precedent case, if it can be found. Meanwhile, pending better data, it would be uncommon to find need for spans shorter than half of those shown on the charts.

Expansion

On stainless pipe, this amounts to about 1¼" per 100 ft per 100°F temperature rise, increasing somewhat at higher temperatures. If the ends are not free to move apart this can result in buckling of straight pipe with bending stress already up to the allowance limit due to the beam action between pipe supports; thus added load could overstress the pipe and cause damage. In designing pipe supports and anchorage, provision for free longitudinal movement is imperative. Expansion joints or bends are sometimes necessary.

Concentrated Loads

Concentrated loads such as valves and fittings and their insulation can overstress a pipe line designed for full length spans. The remedy is to provide supports at the concentered load or alternately to shorten the affected span to compensate.

Gas Line Testing

Testing by hydrostatic method would probably cause permanent damage to lines larger than 1" if at full span. If this method of testing is imperative the allowable span should be not over 115% of the "Indoors, Liquid Line" at 100°F; i.e. a temporary load without wind or temperature penalty.

Condensate

Condensate in vapor lines is usually unimportant as a beam load, this, however, should be examined. If for any reason such as cold start up, large quantities of liquid will be present the approximate span should be chosen from "Liquid Line" charts.

Cumulative Results

At full value, all in one direction, these could have important effect on the final section of span. It is suggested that each variable be weighed objectively with the best data available plus engineering judgment and be combined thus.

(L final) = (L chart) x a x b x c x d, etc. When L = maximum allowable span and a, b, c, d, etc. = % factors.

Then using-

(a) sea	mless pipe	112%
(b) wea	aker alloy	90%
(c) hea	vy liquid	95%
(d) clo	se to free span	93%

(L final) = (L chart) $\times 1.12 \times .90 \times .95 \times .93 = 89\% \times (L chart)$.

The safe span would then be limited to 89% of that shown on chart.

DRAINAGE

Having determined maximum safe span and thickness for a given pipe line, drainage can be a determining factor in the choice of pipe thickness.

Many pipe lines have to be drained at least occasionally. Air, gas or vapor lines may accumulate moisture which must be removed. Process liquid lines lying full and inactive may freeze, may allow chemical deterioration of product or may permit settling of suspended solids which clog the line.

For light loads or infrequent needs, blowing with compressed air or steam is sometimes used. General practice calls for sloped lines draining by gravity to a take-off point such as a sump or a steam trap. Pump suction lines must often be sloped to avoid air pockets in the line which cause faulty pumping.

For a perfectly supported line with no sag and carrying a thin clean liquid ¼ or ½% incline should give a good drainage. For slurries and very thin paste 2% is often satisfactory. However, most lines are on spaced supports and the pipes sag between supports. Then the high end has to be raised enough to overcome this deflection in order to drain the low end of the span.

Four "Deflection" charts are provided herewith covering the most active part of the field. Deflections for other spans and lines may be calculated by the use of the formula shown thereon, for "free" span deflection.

In most cases it is safe to assume that a loaded line will start to drain at the open down-hill end. This releases part of the liquid load. Then the elasticity of the pipe reduces the deflections to allow more flow, continuing until the pipe is almost empty. For the usual case then, drainage calculations are based on empty pipe.

The conservative assumption is a pipe in "free" span thus:

Deflection

One end must be raised to complete the drainage. It can be shown that in order to make the lower end of the pipe level on a "free" span the rise at the high end must be 4 times the deflection; hence:

 $R_f = 4 \Delta_f$

For maximum allowable "free" span the normal range of "Rise" is 1% to 2½% of span.

For "continuous" span the deflection is 1/5 that of "free" span and needs only 1/5 as much "Rise".

The end span deflections are intermediate cases between "free" and "continuous". Within this range a "judgment" factor may be applied; depending on the local detail.

To the Rise thus determined, add sufficient "incline" ($\frac{1}{4}$ % to 2% of span) as previously noted, to obtain clean drainage. The uphill support will be the distance R + i = s above the lower one.

Thus, for the purpose of this study:-

Inches Δ = deflection = bowing of the pipe due to elasticity.

' R_f = rise = necessary lift to high end to make low end level.

' i = incline = lift necessary to cause flow at low end.

" s = slope = sum of R & i.

Feet L = length = span between supports.

All of this sloping takes vertical space which may be at a premium under low ceilings, indoors, or with very long runs outdoors. The deflection varies as L square; hence, if we wish to reduce the deflection to half we get (the fourth root of .50 equaling 84%) i.e., the span may be shortened to 84% of the original length. If the liquid, then, is thin permitting modest incline at the low end, a saving of perhaps 40% in the slope per span is achieved.

"Deflections" Charts: Charts are provided covering the most active part of the stainless piping field.

They are developed for bare pipe, empty and full, at atmospheric temperature, comparing three weights of pipe, Schedules 5, 10 and 40. They are based on "free" spans, i.e., with ends free to move on their supports.

From these charts:

- Actual deflections may be read directly for these conditions.
- (2) For lines loaded with insulation the increased deflection may be estimated to be in direct proportion to the increased weights.
- (3) For longer spans the deflection will increase as the 4th power of the length of span. Thus for a span of 30 ft. we may readily find:— $(\frac{30'}{25'} = 1.2)^4 \text{ equals } 2.07 \text{ times the deflection for 25 feet.}$

(4) for "empty" bare pipes as for air or gas, the deflections are essentially equal.

"Deflections" Charts Formulae: For cases beyond the scope of the charts these formulae are noted here for the designers' convenience.

$$\begin{split} & \Delta_f = \frac{5}{384} \quad \frac{W \, L^4 \, (12)^3}{E \, I} \\ & \Delta_c = \frac{1}{384} \quad \frac{W \, L^4 \, (12)^3}{E \, I} \\ & R_f = \frac{90 \quad W \, L^4}{E \, I} \\ & R_c = \frac{18 \quad W \, L^4}{E \, I} \end{split}$$

(See Deflection Charts . . . pages 85-86.)

When:-

 Δ_f = Deflection on "free" span in inches

 $\Delta_c =$ Deflection on "continuous" span in inches

R_f = Rise on "free" span in inches

R_c = Rise on "continuous" span in inches

W = Weight of piping in lbs. per lineal ft.

L = Length of span in feet

E = Modulus of elasticity (28,000,000 for Type 304 @ 200°F.) (23,400,000 for Type 304 @ 800°F.)

 I = Moment of Inertia of pipe (equals .049 (D⁴ - d⁴) (in inches)⁴

D = Diameter, outside pipe in inches

d = Diameter, inside pipe in inches

CORROSION EVALUATION DATA

This data summarizes previously published information in a group of charts for ready reference. Materials of construction suitable for consideration may be recognized quickly, and the inapplicable readily eliminated.

Data included in these charts, or information developed from such data, can be used only as a guide. In most cases additional corrosion testing or pilot plant experience will be required before final determinations can be made.

Data in this (as are data in similar) compilation do not, nor are they intended to, represent absolute values in any case. Thus the data, which indicate a material, may or may not be used with a given corrosive under a given set of conditions, and should not be construed as advice to use or not use it without further investigation or testing.

The corrosive data presented in these charts was extracted with permission from 1967 Corrosion Data Survey, Publisher, NACE (National Association of Corrosion Engineers), 2400 W. Loop S., Houston, Texas 77027.

CORROSION RATE

LESS THAN 0.002" PER YEAR

LESS THAN 0.020" PER YEAR

FROM 0.020" TO 0.050" PER YEAR

GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

0 20 40 60 80 100 CORROSION EVALUATION DATA

	TYPE 304 18-8	TYPE 316 18-8-MO	ALLOY NO. 20	MONEL	NICKEL	INCONEL	HASTELLOY ALUMINUM	TITANIUM	ZIRCONI
AMMONIUM CARBONATE	00000 0000 0000 0000	000000 000000 000000	0000000 00000 00000 00000	000000000000000000000000000000000000000	ox (00000	B, C, D		
AMMONIUM CHLORIDE	PITS STRESS -CRACKS	PITS	PITS	DRY->	0000	DRY PITS			
AMMONIUM NITRATE	INTER- GRANULAF LCORRISION STRESS	CRACKS		EXPLOSIVE	×		B.C TRACES OF Cu.Sn.Pb		
AMMONIUM PHOSPHATE	000	000	000 000 000	000		00000	C .	•	:
MMONIUM SULFATE	_ INTER- GRANULA -CORROSIO	R 00000	00000 0000 0000	00000	pH < 7	PITS	C.D		
MYL ACETATE							B,C DRY		
NILINE	0	0	0 -				PITS WATER >1.0%		
NILINE SULFITE		00000					B, C		
RSENIC ACID	000 000 000	**************************************	00000 00000 00000		AIR FREE	0	B,C		
ARIUM CARBONATE	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0		000000000000000000000000000000000000000		1500°F -> 9 B,C,D		•
ARIUM CHLORIDE	1900°F - PITS - STRESS - CRACKS		9000 0000 0000	0000	0000	000	0 B.C. D		
ARIUM HYDROXIDE	00000			00000		00000	1500°F → 0 B,C,D 0		
ARIUM NITRATE	000	PITS	9000 0000 0000	0000	000	000	1500°F→• B		
ARIUM SULFATE	00000	00	00000	0 0			1500°F->0 B		
ENZENE (BENZOL)							B, C, D		
BENZENESULFONIC ACID		000		AIR FREE	AIR FREE		B, C, D		

CORROSION RATE

• LESS THAN 0.002" PER YEAR

• LESS THAN 0.020" PER YEAR

• FROM 0.020" TO 0.050" PER Y

☐ FROM 0.020" TO 0.050" PER YEAR
× GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

(4)	TYPE 304 TYPE 316 18-8 18-8-MO	NO. 20 M	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONIU
			9		B, C, D	NaC FREE		
ENZOIC ACID	0000000 000000000000000000000000000000	0000000 0000 0000000 0000 0000000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00		0000000		
SORIC ACID (BORACIC ACID)	PITS PITS	A11		**************************************	B, C, D			
BROMINE (DRY)	\$50		WATER WATER 57 ppm <57 ppm		B,C	σφ	•••••	••••
	*	\$ 00	x	x	С		0	*
BROMINE (WET)	*	* *		•				*
BUTYL ACETATE	Φ	000 000 000	8		B, C, D	0		
BUTYRIC ACID	00000000000000000000000000000000000000			E AIR FREE		AVOID TRACES OF Cu Sr, Fb		
CADMIUM CHLORIDE	1 000 x.x 388		IR FREE AIR FRE		B. C	xxx		
CADMIUM SULFATE					B, C, D	×		***
CALCIUM ACETATE	000 0000 000 0000 000 0000	9090 9090 9090 9090 9090 9090	0 0000	0000 0000 0000	B, C, D	0		00000
CALCIUM BISULFITE (100% SOLUTION CONTAINS 10% SO ₃)	INTER- GRANULAR CORROSIONO	9 9	×	××	С	SO ₂ 2%		
CALCIUM CARBONATE		0 00	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1500°F-> B,C,D		•	
CALCIUM CHLORATE	CHLORIDE CHLORIDE	CHLORIDE FREE	0 000	000	C	CHLORIDE FREE		
CALCIUM CHLORIDE	PITS PITS STRESS STRESS CRACKS CRACKS	Cu.	NI IONS AIR FREE	* 1500°F>	1500°F	* INHIBIT -	***	
CALCIUM HYDROXIDE	00 0 00000 0 00000 00000 00000 00000 0000	0 0	9 00	000	С			
CALCIUM PERMANGANATE		000000 00	00 000	0004	B, C, D	0000	*	
	opopopo opopop	opopop op	000	0000	1 0000	opop		

°F 800 427 °C CORROSION RATE . LESS THAN 0.002" PER YEAR 600 316 O LESS THAN 0.020" PER YEAR TEMPERATURE, 300 112 112 204 ☐ FROM 0.020" TO 0.050" PER YEAR 149 × GREATER THAN 0.050" PER YEAR 100 100% LINE REFERS TO GRAPH TO ITS LEFT 125 52 24 40 60 8 CONCENTRATION, %

(K)	TYPE 304 TYPE 31 18-8 18-8-MO		MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM TITANIUM	ZIRCONIUN
COPPER NITRATE	• 00000000 • 0000000 • 0000000 • 0000000 • 0000000 • 0000000	• • • • • • • • • • • • • • • • • • •	*****		*****	**************************************	QXXXXXXXX	
COPPER SULFATE		E	AIR FREE	***	****	C	×××	
ETHYL ACETATE		6 0	0000	\$ 0 0 0		•	WATER FREE	
THYL BENZENE			0			B C		
ETHYL CHLORIDE	STRESS CRACKS	0 0		DRY→	□RY→	B.C.D	DRY->	
ETHYLENE BROMIDE	DRY->			0 0		0	DRY>	
ETHYLENE CHLORIDE	DRY—> DRY—	>	0 00 0 00 0 00	0 00		B	DRY>	
ETHYLENE DIBROMIDE	PITS PITS	0 0	8	0 0 0 0	PITS	B, C	***	
ETHYLENE GLYCOL	0 0	5	•	8 6 6 6 6 6		8	VERY	
ethylene oxide	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	8	• •		B. C. D	PURE EQ CATALYZES	•
FATTY ACIDS	INTER- GRANULAH CORROSIÓNS DE CORROSIÓNS			PITS		B,C,D	1.0%	
FERRIC CHLORIDE	INTER- GRANULAR CORROSION	PITS	***	××××	ŠŠ.	C × ×	Šxxx x	CRACK
FERRIC NITRATE	30000 90000 30000 90000 30000 900000		××××	xxx	x x x	C .	x x x	
FERRIC SULFATE	INTER GRANULAR CORROSION		φx	•	•	C		
FERROUS CHLORIDE	PITS STRESS	D D D	ux.		ĸ	B, C Fe C ₃ FRE	ox x	
FERROUS SULFATE	PITS	000000 000000 0000000	900	Φx Φ	0		0× 00000000000000000000000000000000000	

CORROSION RATE

• LESS THAN 0.002" PER YEAR

C LESS THAN 0.020" PER YEAR

FROM 0.020" TO 0.050" PER YEAR

C GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

	TYPE 304 18-8	TYPE 316 18-8-MO	NO. 20	MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM TITANIUM	ZIRCONIU
	480 ->×		Π	12000F→	12000FF→	1200PF	B, C, D		H
LUORINE (GAS)	1400						6,0,0	DRY->	•
					0				
								×	
FLUORINE (LIQUID)								HIT FREE	+++
LOOMINE (EIGOID)									*
	•			•	• •				Ř
	PIT\$	PITS	PTS	CRACKS	STRESS CHACKS	++++	B, C		++++
FLUOSILICIC ACID					CHACKS		CRACKS		
		00 0	00		•••	::-	000000000	x x x	x
				DISCOLORS	DISCOLORS	0		FORMIC ACIO FREE	
FORMALDEHYDE	000	0000	000	0000	900	9 00	B, C, D	SPITS	
	****		*****	11000 po		0000 0000 0000	0000000	000000	
		*******	· · · · · · · ·	• • • ŏ • ŏ · • ŏ	ő o	• 6060	00000000	οδοδοδο	******
	GRANULAR	PITS		AR FREE	AIR FREE		B.C	ABRATED AIR FREE	
FORMIC ACID	CORROSION	*****	× ×	X X	00000000	× · · · Š · · · š	x 0 0	- x - x	
	*********	******		φοφοφοφοφο • ο φοφοφοφο • ο φοφοφοφο	0000000000	00000000000000000000000000000000000000		AERATED AIR FREE	x k
								1 1 1 1	
FURFURAL							B. C. D		
				0 0		8			<u> </u>
	1000	. 0 6	• • • •	0 0	0 0	0 0	6 6	0000000000	
		+++					B.C.D		+++
GALLIC ACID							8,0,0		
	0000000000	000	0000	1		000		00000	
	0,000000	2000000	373404040						
GLUCONIC ACID							B, C, D		
SECCONIC ACID	 			8	8 8			8 8	+H
	0000 00000	0000 0000	0000000000	600000000	00000000000	00000000	••••••	000 0	
	STRESS SRAGKS	STRESS					B,C,D	PITS	
GLUTAMIC ACID	PITS	STRESS CRACKS PITS					0,0,0		
GLYCEROL							B, C, D		
GETGENGE	 					++++			+++
								3	
				AIR FREE	ALD FORE	+++	B.C.D	PURE	+++
GLYCOLIC ACID	00000000	00000000	0000000000		AIR FREE	++++	B.C.D	ALUMINUM NaCI FREE	
	00000000000000000000000000000000000000	000000000	0000000000		9				
	0.0000000	00000000	000000000					0000000	•
HEVAMINE		-					B, C, D	PIT\$	
HEXAMINE		+++							\mathbf{H}
		1			1	1 1	******		
		CATALVES	CATALVEC					20 04	
HYDRAZINE		DUE TO MO	DUE TO MO			++++	С	28, 24	
	••••	••••				++++			
	PITS	PIT\$					В		
HYDROBROMIC ACID					DRY		00000		
	*****	×××××	*****	*****	××××× 0	×	00000	*****	OxxxxD
							Fe Cla FREE		
HYDROCHLORIC ACID		1111					CL FREE	CHACKS	X XPIS
(AERATED)			×x				0000		
	××××	××××	DOXX	××××	×××× ;	××××	0000	xxxx Soo x	****
HADBOCHI OBIC 4012						++++	Ed CID FREE		
HYDROCHLORIC ACID (AIR FREE)							O XX B		a v
V 1				×	**	×	0000	×	
	xxxx	××××	xxxx	Ôxxx	ÔΦxx 3	*xx	****	xxxx	

4 0	TYPE 304 TYPE 316 ALLOY MONEL NI 18-8 NO. 20 MONEL NI	CKEL INCONEL HASTELLOY ALUMINUM TITANIUM ZIF	RCONIL
HYDROFLUORIC ACID	INTER STRESS ST GRANULAR CRACKS CR	RESS STRESS ACKS CRACKS	
AERATED)	CDFR@SION	x * • •	
	INTER.		x x x
HYDROFLUORIC ACID AIR FREE)	GRANULAR CORROSION CRACKS CR	ACKS CRACKS C	+
	STINESS		
	x	Ox OF	1
HYDROGEN		k B,C	-
			#
	10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 10000 -> 100000 -> 10000 -> 100000 -> 100000 -> 100000 -> 1000000 -> 100000 -	00F->k	
HYDROGEN CHLORIDE	1000P-> 10009-> 2 -9009-> 9009-> 2 	В	-
ANHYDROUS HCL)	STRESS STRESS CRACKS CRACKS	В	#
	x	x v x x	-
HYDROGEN CHLORIDE		B	
+ STEAM		- 	++
No.			
HYDROGEN CYANIDE GAS			
	\$000	FUR D B C D ACID FREE AC	CID FR
HYDROGEN FLUORIDE	ACTION ACTION ACTION	TON E	
	PRESENT PRE	THI	
HYDROGEN IODIDE	1% × × ×	AIR FREE B, C	-
	-1%	×	**
		ALINE ALKALINE B.C. PASSIVATE	
HYDROGEN PEROXIDE	PASSIVATE ACID FREE ACID FREE ALKALINE ALK	25 25	
	0000	000	
	10000-0 10000-0 10000-0	x 100002-x 9	
HYDROGEN SULFIDE		6 B.C 6	-
(DRY)			
	\$ \$ \$ \$ \$		
HYDROGEN SULFIDE	STIRESS	B, C MAY	
(WET)	NAY PIT	**	
	60 50 b k	xō b bō b	
INDRIGORIO AGID	AIF	FREE B	
HYDRIODIC ACID		000000000000000000000000000000000000000	
	xxxxx oxxxxx o xxxx oxxx	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****
HYDROXYACETIC ACID	* * * • • • • • • • • • • • • • • • • •	00 00 00	
		00 00 00	
	8420F→x 8420F→x PITS PITS	X 15000F→X	+
ODINE	x p x p DRY ≥ C	RY → PPTS DRY → CREATER OF CREAT	
	X X X X D D D D D D D D D D D D D D D D	x	
SOPROPYL ACETATE			
	00 0		
	INTER- INTER-		-
LACTIC ACID	INTER- INTER-	B,C,D PITS 000 00000000000000000000000000000	

CORROSION RATE

• LESS THAN 0.02" PER YEAR

□ LESS THAN 0.020" PER YEAR

□ FROM 0.020" TO 0.050" PER YEAR

× GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

	TYPE 304 TYPE 310 18-8 18-8-MO		MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONII
	PITS PITS								
LACTIC ACID VAPORS						С			
	0000	0000	×*×*	×*××	××××	+•••			
LEAD ACETATE						BCD			
	00 000	000	00 00 00	0000					
	00 000	000	00	60 6	+++		Φx x	++++	
LEAD CHLORIDE						ВСО			
LEAD CHLORIDE	·	 	8						+++
	x 6x	8	80	0		0	×		
		+++				B, C D			
LEAD NITRATE	000					0,010			
	000 00000	000000		000					
	000 0000	0000	¢	000	+++		Ďχ	++++	++
LEAD SULFATE						B,C,D			
LLAD SULFATE	00	80	8	8					
	60 60	00	8	66 6		6	×		
	12000 ×			120 0 ℃→×	\Box	0.0	DUTE		
LITHIUM CHLORIDE	CRACKS CRACKS		AR FREE		PITS	B, C	PITS		
	1/200 + STRESS STRESS CRACKS CRACKS	00	******					000000	
		• op •	• • •		•	•••	000	60	•••
THE HANDSONIE						B, C, D			
LITHIUM HYDROXIDE	8 8	8	8	9		0		++++	\Box
	8 8	8	0 0	0000	000	0000	×	c	
	STRESS STRESS		415 5555	15 5555	110 5055				AIR FR
MAGNESIUM CHLORIDE	PITS D CRACKS	++++	-	A)R FREE	AIR FREE	B, C, D		1.0	+++
	000 D 0000	0	0000 0000 0000				11%		
	G000 0000	1 ****	Φ •Φ0	2000	20009		750 →	••••	••••
MAGNESIUM HYDROXIDE						B, C, D			
AND MAGNESIUM OXIDE	0 0	20	•	:					
	0 0	0				0			
						500°F>	CHLORIDE		
MAGNESIUM SULFATE		++++	+++		++++	CRACKS			
		000				*****	00000		0000
	INTER-	****	0000	0	••••	2	•	****	00000
	GRANULAR		AR FREE	AIR FREE		В, €			
MALEIC ACID	CORROSION CORROSION	20000	0000	0000	0000		****		
	00000 000000	000000	φ φοφο φ φ φ φ φ φ φ φ	00000	00000	• 60 60 60 60 60 60 60 60 60 60 60 60 60	0000		
MALIC ACID		++++	AIR FREE			B, C,D		++++	
		0000	00 0	00000					
		00000	oo •	50 6			00000 0		
MANGANESE CHLORIDE								++++	+++
(11.5%) +HC1									
		++++		-					
MANGANESE SULFATE	PITS			+++		С		+H	
		******	000	000	90	000	••••		
		***	00	000	00	000			
		++++				С			
MANGANOUS CHLORIDE									
	0 0 0 0	0 0 0							00
	0 0 0 0	ŏ ŏ				•	+++++		00
MERCURIO MITO ATT	SHESS		STRESS						
MERCURIC NITRATE	S HESS CRACKS	0 0	STRESS CRACKS						

CORROSION RATE
• LESS THAN 0.002" PER YEAR
• LESS THAN 0.020" PER YEAR

○ LESS THAN D.020" PER YEAR

□ FROM 0.020" TO 0.050" PER YEAR

× GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

4	TYPE 304 TYPE 316 ALLOY NO. 20	MONEL	NICKEL	INCONEL HASTELL	ALUMINUM	TITANIUM ZIRCONIUM
MERCUROUS NITRATE	STRESS	STRESS CRACKS		C	Qx >	
MERCURY	100	STRESS CRACKS	9320 *	932P B. C. D	070000	STRESS CRACKS (HARD)
METHALLYLAMINE					Φ	
METHANE				B,C,D		
METHYL CHLORIDE	STRES\$ CRACKS WHEN WET DRY		0000		IGNITES	KO
METHYLAMINE			AIR FREE	B,C, D	CHLORIDE FREE	00000000000000000000000000000000000000
METHYLENE CHLORIDE	STRESS STRESS CHACKS CHACKS	ACID FREE	PITS	PITS B, C	Cu FREE NEUTRAL	
MIXED ACIDS SULFURIC-NITRIC			* * * * *		* * * *	
MONOCHLOROACETIC ACID	PITS X	000000000000000000000000000000000000000	PITS	B. C	* x x x x	
MONOCHLORODIFLUORO METHANE (FREON 22)						
MONOETHANOLAMINE			•		x	
MONO- SODIUM PHOSPHATE AMMONIUM PHOSPHATE POTASSIUM PHOSPHATE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIR FREE	0	B, C, D		
NAPHTHALENE			000		0 0	
NAPHTHENIC ACID	STRESS S S S S S S S S S S S S S S S S S S		SULFUR & FREE S	С	WATER 0.1%	
NICKEL CHLORIDE	PHTS STRESS CRACKS	AIR FREE		В		
NICKEL NITRATE	900	ORY-	1 8	900°F -> b B, C	0 0 0 0 0 0 0	

°F 800 427 °C 700 CORROSION RATE 600 316 . LESS THAN 0.002" PER YEAR ₩ 500 260 O LESS THAN 0.020" PER YEAR 400 300 212 175 204 ☐ FROM 0.020" TO 0.050" PER YEAR 149 × GREATER THAN 0.050" PER YEAR 100 100% LINE REFERS TO GRAPH TO ITS LEFT 125 52 24 75 40 60 8 CONCENTRATION, %

CORROSION RATE LESS THAN 0.002" PER YEAR
 LESS THAN 0.020" PER YEAR
 FROM 0.020" TO 0.050" PER YEAR
 GREATER THAN 0.050" PER YEAR

A.	18-8	YPE 316 18-8-MO	ALLOY NO. 20	MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONIU
	GHANULAR CORROSION						В		+++	
PHOSPHORIC ACID (AIR-FREE)	V	00000	0000000	*****	× ×	0000	******	****		
	00000 xx 00	00000	000000000 000000000 00000000	φοφοφοφοφ φοφοφοφοφ φοφοφοφοφ	00000 0	00000000	90 00 90 00	****		*
							B,C,D			
PHOSPHORUS							B,C,D	DRY→		
								×	+	
	CINTER									
PHTHALIC ACID	CORROSIONS.						B.C			+++
THINALIC ACID										
	-			Ď.		•		9		•
			PITS				B, C	PITS		
PHTHALIC ANHYDRIDE						•				
PHTHALIC ANHYDRIDE (PURE)				•	1		В	•		
+MALEIC ANHYDRIDE										
The second secon				•				•		++++
							c			
PICRIC ACID	9			* * *		*		4		
	000000000000000000000000000000000000000	0000000	000000000	0000	××××	0	90	oxx x		
							0.00			\Box
POTASSIUM ACETATE							B, C, D			
	0 0			90 0		8 8		*		•
	ő	-		60 0	0	0		660		•
							B, C, D			
POTASSIUM BICARBONATE	•••	•	0000	0000	800	0900	000	+++++		
			0000	0000	800	000	000	xxx	::::	::::
	PITS	PITS		ALD EDEE	AR FREE		B, C, D	PITS		++++
POTASSIUM BROMIDE	1115	113		AIR	AIR					
	000 00	000	0000	090	0000	6040 6040	0000	, A		
	000 800	000	0000	1000	0000	1000	1500°F	4		
POTASSIUM CARBONATE							B, C D			
FOTASSION CARBONATE	:::::	****	86868	8484840	000000	00000	000000			
			00000	00000 00000 000000	000000	000000	000000		*****	****
							C.D	CHLORIDE		
POTASSIUM CHLORATE	000		000	*					•••	•••
	000		000	000	0	00	000	000		
	RITIS	-4			1500°F-	•×				
POTASSIUM CHLORIDE	STRESS CRACKS	PITS	PITS			PITS	B, C	PITS		++++
TOTASSION CHECKIDE	000	::		000	000	000	000		***	
	0 -		•••	000	0000	0000	••	x	***	***
							BCD			++++
POTASSIUM CHROMATES	0000	000	0000	0000	****	••••		0000	••••	
	000 00	00	000	000 000 0000				000		
							B,C,D			
POTASSIUM CYANIDE				AIR HRE	E AIR FRE		B,C,D			
	000 00	00	000		000 000 000	000	000			
	000 00	co	0000	00	0000	0000	1500°F-	**x	1	*
							C			
POTASSIUM DICHROMATE				00000	00000	00000	20000	00000	:::	-
				000	000	000	000			
							P 5 5			
POTASSIUM FERRICYANIDE	PITS				0		B, C, D	NEUTRAL		
	000000000000000000000000000000000000000	00000	000000	000000	000000000000000000000000000000000000000		0000	000000		
	000 00	00	0000	0000	000		000	000		•••

CORROSION RATE

LESS THAN 0.002" PER YEAR

LESS THAN 0.020" PER YEAR

FROM 0.020" TO 0.050" PER YEAR

GREATER THAN 0.030" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

	TYPE 304 TYPE 316 18-8 18-8-MO	ALLOY NO. 20 MOI	NEL NICKEL	INCONEL HASTELLOY	ALUMINUM TITANIUM	ZIRCONIUI
POTASSIUM FERROCYANIDE	PIT\$	000 000	000	B, C, D	NEUTRAL	:
POTASSIUM FLUORIDE			0 0		00	
POTASSIUM HYDROXIDE	STRESS STRESS CHACKS CHACKS A A A A A A A A A A A A A A A A A A A	* AIR * STR CRA 000000 000000	FREE KAIR FREE	00000	****	*
POTASSIUM HYPOCHLORITE	PITS PITS	PIT		PITS C D		
POTASSIUM IODIDE	FITS	0000000 00000 0000000 00000 0000000 00000		B, C, D		
POTASSIUM NITRATE	1500 °F+0	AIR	FREE AIR FREE	С		
POTASSIUM NITRITE				30000000000000000000000000000000000000		*
POTASSIUM OXALATE	8800 8800	0000			0	
POTASSIUM PERMANGANATE	000	000	000		***	
POTASSIUM PEROXIDE	0 00	0 0 0	STRESS RELIEVE	B.C.D		
POTASSIUM SILICATE				B, C, D		
POTASSIUM SULFATE		φ φ	:	B, C	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PROPIONIC ACID (ALSO SEE ACETIC ACID)	b	AIR F	AR FREE	C	*****	
PYRIDINE				PITS B		
PYROGALLIC ACID		000000		B, C, D		
PYROLIGNEOUS ACID		AIRF	REE	В		

CORROSION RATE

- LESS THAN 0.002" PER YEAR

 C LESS THAN 0.020" PER YEAR

 FROM 0.020" TO 0.050" PER YEAR

× GREATER THAN 0.050" PER YEAR 100% LINE REFERS TO GRAPH TO ITS LEFT

1월	TYPE 304 TYPE 316 ALI 18-8 18-8-MO NO	LOY 20 MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONI
	NATURAL				B, C, D			
DUININE SULFATE		000000000000000000000000000000000000000	2020202020	000000000	000000000000000000000000000000000000000			
			000000000000	040606060	00000000000	6		•
				+++		++++		
ROSIN		8					2	
		Š .						+++
		11111						
					B.C.D			
SALICYLIC ACID		18111						
	0 80 0000	0000000	00		6	Φx	p	
		+++++						
SELENIOUS ACID								
	1000 1000 1000	+++++	++++					
NUMBER OFFICERS	ACID FREE ACID FREE	9			B, C, D			
SILVER NITRATE	Occopoloxx Copologoxx Copologo	• ××						
	Octoboo	×××××	x	0	••••	xxxxx	:	•
					0.00			+
SODIUM ACETATE	P)T\$	#		04005	B, C, D			10000
	**************************************	00 000000	000000	000000	000000			
		οφ φπ φ οφοφ	0000000	000000	0000000	•••	*****	••••
		+++++			B, C, D			
SODIUM ALUMINUM SULFATE	*****		200000	22222	200000	×××××		:::::
	000000		000000	000000	000000	00000		*****
SODIUM BICARBONATE					B, C, D			
SODIONI BICANDONATE						0		
		•	•	•	1.	0	0000	••
		+++++			c			
SODIUM BICHROMATE		00000						
			++++		0	0		+++
	INTER-				4300			
SODIUM BISULFATE	CORROSION PITS	AIR FREE	AIR FREE		B, D	Cu FREE		
SODIOM BISOLFATE	PITS X	× 000	00000	800	868	6		
	PITS	565	000000	0000	0000	0000	•••	•••••
					В			+++
SODIUM BISULFIDE					0000			
					0000			
					000000000			
	STRESS STRESS	VAPORS			С			
SODIUM BISULFITE	CHACKS CHACKS	1 200	×	k	888	80	0000	+++
		000		000	0000	60	00000	
	13000→ ★				B, C, D	PITS		+++
SODIUM BROMIDE	MAY PIT				6,0,0	113		
	* x 00000 0000 00000 0000 00000 0000	0 0000	00000 00000 00000	00000	00000			
	1700°F→x 1700°F→x 1	000F→x	00000	1700°F	1500°F-	• •		×
		φ			B.C.D			
SODIUM CARBONATE	0 000	0.00	200	200	1:00	××	::-	::-
		100	0000	• • • • • • • • • • • • • • • • • • •	0.00	ex x	#	#
			X	*	*			
SODIUM CHLORATE	CI FREE C1 FREE C1	FREE H2 SQ4	H ₂ SO ₄ FREE	H ₂ \$O ₄	C	H2SQ4		+++
COU.SIII GILGINATE	0000 0000 0000 0000 0000 0000 0000 0000	• • • • • • • • • • • • • • • • • • • •	*******	FREE	00000	HREE		
	3009F-sk :	0.0005	k 1300°F→	100000	0000	0000	••••	
	1 1 1:00 HOFE AX 1	13000E	-× 1(≾(H))∪#->	* I I BOOLH			CTOTOO	+
	PITC L STRESS P	TRILIT	- X	• *			CBACKS.	>
SODIUM CHLORIDE	PITS STRESS PITS PITS CRACKS AIR PITS PITS	TRILIT	- X		B, C, D		CRACKS	

CORROSION RATE LESS THAN 0.002" PER YEAR
 LESS THAN 0.020" PER YEAR
 FROM 0.020" TO 0.050" PER YEAR
 K GREATER THAN 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT.

	TYPE 304 18-8	TYPE 316 18-8-MO	ALLOY NO. 20	MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONI
SODIUM CHLORIDE SLURRY	PITS					PITS				
	0	•	ф	ф	•	1113				
SODIUM CHROMATE							B, C, D			
SOUTOM CHICANATE	00000000 00000000 00000000000000000000	000000000000000000000000000000000000000		\$0000000000000000000000000000000000000	000000000000000000000000000000000000000			000000000000000000000000000000000000000		
CODUM CITRATE							B, C, D			
SODIUM CITRATE	, po 00 0000 0000 0000	0000 0000 0000	0000 0000 0000				οφοφο (×		
	1300°F→1	1300PF	9	1300°F→:	(1300°F→x	13009E		/X		
SODIUM CYANIDE	:	:								
		•	0.5	ΦX) x 0			xxx	x•	
ODIUM FERRICYANIDE	PITS						B.C.D			
			00	Φ			0			
ODIUM FLUORIDE	1800°→× STRESS CRACKS × PITS						B,C,D			
	^	0	0 0	1	00		0	x x		
ODIUM HYDROSULFIDE							С			
	***			•••	•••	•••	•••			
ODIUM HYDROXIDE		STRESS D	STRESS GRACKS	STRESS X	STRESS ON CRACKS	STRESS ** CRACKS *	STRESS CRACKS		* ****	x
	*****	900 B	0000 H	φοφοφοφο	00 8	00000		×××	000	000
				COPPER		AVOID RACES OF	B, C, D	·xxx		**
SODIUM METASILICATE						Cu				
	950°F→ MAY PIT	950°F→			950°F→¢	950¢F→		×		*****
ODIUM NITRATE				00000	8688000		С			
	*				00000		0000	••••	>•••	
ODIUM NITRITE	-00000	000000	000000	000000	000000	00000	B, C, D	PITS		
	0000	0000 0000	0000	00000		0000		0000		
ODIUM PERBORATE							B, C, D			
		0	0000		0000		0000	x		
ODIUM PEROXIDE					6		B, C, D	Co2 FREE		(
obtom terioxide	0000	0	0000	0000	0 0			0000		
							B, C, D			
ODIUM PHOSPHATE	0000000000	000000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000				
	οφορορορο	οροφοροφο	0000000000	00000000000	οφοφοφοφο	000000000		x		
ODIUM PHOSPHATE [RIBASIC]	0000000000	000000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	B, C, D			
	0600000000	000000000	000000000		000000000000000000000000000000000000000	00000000		×		
ODIUM SILICATE	99999999	********	000000000	000000000	040000000	404040404	P, C, D			
	10000000000000	οφοφοφοφο	οφοφοφοφο	00000000000000000000000000000000000000	οφοφοφοφο	φοφοφοφο	00000000000			

• LESS THAN 0.002" PER YEAR

- O LESS THAN 0.020" PER YEAR ☐ FROM 0.020" TO 0.050" PER YEAR
- × GREATER THAN 0.050" PER YEAR

TO THE STATE OF TH	TYPE 304 TYPE 31: 18-8 18-8-MO		MONEL	NICKEL	INCONEL H	ASTELLOY	ALUMINUM	TITANIUM	ZIRCONIU
	1550°F→6 1550°F	→		1550PF→0	$\Pi\Pi$				\Box
SODIUM SULFATE	STRESS CRACKS	!	00			B, C, D		++++	
	0 00	***	000	0000 000	000	0000			
	••0	••••	••40			9000	***	1:1	
	PIT\$		1111	 	\$TRESS \$CRACKS	B, C, D		++++	+
SODIUM SULFIDE		*	0 0 0	0 00	9 9 9	0,0,0			
	***** ********************************	00000	00000	0 00	700				\perp
	• ו		ō	8 0 8	100	} 	x	**	++++
			++++		++++	c		+++++	
SODIUM SULFITE		•				200			
		1	00	000000000000000000000000000000000000000			000	0	
			00	90	100	} 	0	ő	
	<1.0% <1.0%		++++		 	В		1111	
STANNIC CHLORIDE									
	· · · · · · · · · · · · · · · · · · ·	x			1 8	8 8	+++		0
	oxxxxx xoxx	0*	□x	D* X	+ I o	00000	x x	!	••
	PITS		 	\$ \$	1 1 1	PITS			1111
STANNOUS CHLORIDE			DRY	DRY	DRY	B			
	***			1				+	000 000 000 000
	×××* * * • • • • • • • • • • • • • • • •	1	ox	8009F->0	1500°F	1404	××××	++++	••••
		1	STRESS-		STRESS CRACKS			1	
STEAM			CRACKS		CRACKS				
		•	•	1	++++	++++	++++		
	- 	++++	++++		+++++	++++		+++++	++++
			1111	1		B, C, D		++++	
STEARIC ACID			Š .						
			4		1 1	+++	+++		
		1	9	1 1 1	 	++++			•
			++++	 	+++++	c			++++
STRONTIUM NITRATE	0404	0400	0000	0000		2000	0000		
	0000 00000 0000 00000	0000	00000	000000	00000	0000	0000	++++	++++
	0404 40404	60600	90909	00000 00	9090 90	2000	Ιοφοφ		
			++++			B,C,D		++++	
SUCCINIC ACID	******	404040	400000					*****	
	04040 004040 04040 004040	000000	000000 000000 000000		1000		00000		
	00000 00000	000000	000000	000000 00	00000	30000	00000	*****	*****
			1111			B, C		++++	++++
SULFATE BLACK LIQUOR				*					
			000	\Box	1111				
	1 9	9	φ ο	9					
					++++	++++			
	STRESS					B. C			
SULFATE GREEN LIQUOR	STRESS					В, С			
SULFATE GREEN LIQUOR						В. С	.		
SULFATE GREEN LIQUOR				0 0		B, C	>		
	INTER- GRANULAR	•		0 0		B, C	>	*	
	INTER- GRANULAR			0 0	0	B, C		*	
	INTER- GRANULAR CORROSION STRESS CRACKS			0 0	0	B, C	5	*	
SULFATE GREEN LIQUOR SULFATE LIQUOR	INTER- GRANULAR	0	0	ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	0	B, C		*	
SULFATE LIQUOR SULFITE LIQUOR 100%	INTER- GRANULAR CORROSION STRESS CRACKS	0		ф ф ф ф	•	B, C		*	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS	INTER- GRANULAR CORROSION STRESS CRACKS	0		ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	0			\$	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS	INTER- GRANULAR CORROSION STRESS CRACKS	0	0	0 0	0 0			\$	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS	INTER- GRANULAR CORROSION STRESS CRACKS	0	0		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C		*	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂)	INTER- GRANULAR CORROSION STRESS CRACKS CRACKS 3350 8500-	0	0	STRESS AIR FREE 1	AIR FREE T			*	*
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 0% SO ₂)	INTER- GRANULAR CORROSION STRESS CRACKS 3350 8500-	0	0	STRESS AIR FREE &	AIR FREE	C 850°		*	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂)	INTER- GRANULAR CORROSION STRESS CRACKS CRACKS 3350 MAY PIT	0	0	STRESS AIR FREE S CRACKS		C 850°		*	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂)	INTER- GRANULAR CORROSION STRESS CRACKS 3350 8500-	0	0	STRESS AIR FREE 3 CRACKS		C 850°		*	
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂) SULFUR	INTER- GRANULAR CORROSION STRESS CRACKS CRACKS 3350 MAY PIT	0	0	STRESS AIR FREE S CRACKS		C 850°			
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂)	INTER- GRANULAR CORROSION STRESS CRACKS CRACKS	0	AJR FREE	STRESS AIR FREE		C 850° -> C			
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂) SULFUR	INTER- GRANULAR CORROSION STRESS CRACKS	• DRY—	AIR FREE	STRESS AIR FREE		850°			
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂) SULFUR	INTER- GRANULAR CORROSION STRESS CRACKS	• • • • • • • • • • • • • • • • • • •	AIR FREE	STRESS AIR FREE & CRACKS		850° → C	×	*	
SULFITE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂) SULFUR	INTER- GRANULAR CORROSION STRESS CRACKS	• • • • • • • • • • • • • • • • • • •	AIR FREE	STRESS AIR FREE & CRACKS		850°	×		
SULFATE LIQUOR SULFITE LIQUOR 100% SOLUTION CONTAINS 10% SO ₂) SULFUR	INTER- GRANULAR CORROSION STRESS CRACKS A STORMAN B S	DRY—	AIR FREE	STRESS AIR FREE		850° -> C	x	co .	

	TYPE 304 18-8	TYPE 316 18-8-MO	ALLOY NO. 20	MONEL	NICKEL	INCONEL	HASTELLOY	ALUMINUM	TITANIUM	ZIRCONIUM
SULFUR TRIOXIDE	1200°F→		0 0	000000000000000000000000000000000000000		000000000000000000000000000000000000000	C, D 00	×		
SULFURIC ACID (AERATED) NO VELOCITY	GRANULAR CORROSION	GRANULAF CORROSION	2 × × × × × × × × × × × × × × × × × × ×		*****	******	B, D	*****	× ×××××	\$0000 0
SULFURIC ACID (AIR FREE) NO VELOCITY	GRANTER	GRANULAR		x	**********	x	B, D			*0000000
SULFURIC ACID (FUMING) DLEUM			6	000000000000000000000000000000000000000	*	×	C			
SULFUROUS ACID	GRANULAR CORROSION	INTER- GRANULAF CORROSION		0	*0	xo.	B, C, D	0	00	00000
TALL OIL		×		* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	×	x	B. C			
TANNIC ACID		000000000000000000000000000000000000000		000		0	B. C			
TARTARIC ACID	AVOID				A)R FREE	000000 000000 000000 000000	B, C, D			
TETRAPHOSPHORIC ACID		×		0,000			B, C	*****		
TITANIUM TETRACHLORIDE	DFY→		0				С			
TOLUENE							B.C.D			
TRICHLOROACETIC ACID		*******		000000000000000000000000000000000000000	0		B, C, D	*****	***	* * *
TRICHLOROETHYLENE	MAY FIT	PITS		PITS	PITS	PITS	B, C			
TRICHLOROMONOFLUORO- ETHANE (FREON 17)			μυψοφοφοφο				В, С			
TRICHLOROPROPANE							B, C			
TRICHLOROTRIFLUORO ETHANE (FREON 113)							B, C			

CORROSION RATE . LESS THAN 0.002" PER YEAR O LESS THAN 0.020" PER YEAR ☐ FROM 0.020" TO 0.050" PER YEAR

100% LINE REFERS TO GRAPH TO ITS LEFT

CORROSION RATE

LESS THAN 0.002" PER YEAR

FROM 0.002" TO 0.004" PER YEAR

FROM 0.004" TO 0.008" PER YEAR

GREATER THAN 0.008" PER YEAR

800 700 600 5-500 8-100 8 PITTING TENDENCIES:

• UP TO JOS" DEEP

□ UP TO JOS" DEEP

□ UP TO JOS" DEEP

□ UP TO JOS" DEEP

EXAMPLE: 18 C"-8 NI STAINLESS STEEL IN SEA WATER
AT ROOM TEMPERATURE FLOWING LESS THAM ST. PER
SEC. CORROLES AT THE RATE OF LESS THAM JOS" PER
YEAR BUT WILL JOS MAYE PITTING TENDENCIES WHICH
WILL BE GREATER THAM JOS" DEEP.

100". LINE REFERS TO GRAPH TO ITS LEFT

DIMENSIONAL TOLERANCES

Established tolerances for Speedline Fittings conform to Manufacturers Standardization Society and U.S.A. Standards and are in accordance with M.S.S. SP-43 and ANSI Specification B16.9, where applicable. Limits shown below are the maximum allowable variations permitted by the

specifications. SPEEDLINE manufacturing techniques and inspection procedures usually insure that finished fittings will be closer to stated dimensional size than required by the specifications. Dimensions shown are in inches.

		PIPE SIZE (inches)									
	1/2	3/4	1	1 1/4	11/2	2	21/2	3	4	6	
OUTSIDE DIAMETER at Welding End Schedules 5 & 10 Maximum allowable variation from published Speedline fittings dimensions			+1/64 -1/32				±1.	/32		+1/10 -1/3	
OUTSIDE DIAMETER at Welding End Schedule 40 Maximum allowable variation from published Speedline fittings dimensions				+1/16 -1/32				±1	/16	+3/33 -1/1	
WALL THICKNESS* AII Schodules Maximum variation from nominal thickness for schedule and size.				87	-1/2% c	of Nomi	nal				
CENTER TO END 90° & 45° Elbows—Tees All Schedules Maximum allowable variation from published Speedline fittings dimensions					±1	/16					
CENTER-TO-CENTER 180° Return Bends All Schedules Maximum allowable variation from published Speedline fittings dimensions					±1	/4					
LENGTH Type C Stub Ends Concentric & Eccentric Reducers All Schedules Maximum allowable variation from published Speedline dimensions					±1	/16					
O.D. Type C Stub End Lap Schedules 5, 10 and 40 Maximum allowable variation from published Speedline dimensions					+0 -1	/32					
LAP THICKNESS Type C Stub End Schedules 5, 10 and 40 Maximum allowable variation from nominal thickness for schedule and size.				87	7-1/2%	of Nom	inal				
CAPS—OVERALL LENGTH All Schedules Maximum allowable variation from published Speedline dimensions					±	1/8				±1/4	
ANGLE ANGULARITY All Schedules Maximum allowable off-angle tolerance					1/	32				1/16	
PLANE ANGULARITY All Schedules Maximum allowable off-plane tolerance					1	/16				1/8	

END DETAIL

To maintain versatility all fittings except caps and stub ends are normally supplied with ends cut square.

Any Speedline fitting may be ordered with ends beveled, 6" Sch. 5 and all Sch. 10 Caps and Stub Ends are normally beveled.

^{*}For Tee and Lateral Tolerances, see footnote on fittings data pages.

DESIGN EXPERIENCE TESTS

The American Standard Code for Pressure Piping USAS B31.3 Paragraph 313 states:

Expanded joints may be used where experience or test have demonstrated that the joint is suitable for the conditions and where adequate provisions are made in the design to prevent separation of the joints.

Speedline EXPERIENCE

The first Insert Flanges for corrosion resistant process piping were developed by Speedline more than 20 years ago. During that time, well over a half million Insert Flanges have been produced for use in many types of applications. Performance has proven them equal to the varying and demanding conditions experienced in present day processing plants.

Speedline DESIGN

The original Insert Flange design was substantially

improved in 1963 with introduction of Taper Design. Rotatability for ease of bolt hole alignment and the already proven advantages of expanding type flanges were brought together in the T/D Insert Flange. The resulting flange design quickly gained wide acceptance in the many segments of the processing industries.

Speedline TESTS

A variety of tests during the developmental period and others programmed on a continuing basis insure maintenance of the highest performance standards. Some of the tests cited below were conducted in our own plant, others were performed by outside independent laboratories of nationally recognized capability. All tests listed and others in our files attest to the complete reliability of the Speedline expanded joint.

HYDROSTATIC TESTS

TEST ASSEMBLY	TEST Media Temperature Time	TEST PROCEDURE	NATURE OF FAILURE	POINT OF FAILURE	PIPING CODE Allowable non-shock working pressure for pipe
2" IPS Sch. 5 Type 304L welded pipe with Speedline T/D Insert Flanges expanded both ends.	Water Ambient To failure	Hydrostatic pressure applied to failure.	Pipe burst	3700 psig	612 psig
2" IPS Sch. 10 Type 304L welded pipe with Speedline T/D Insert Flanges expanded both ends.	● Water ● Ambient ○ To failure	Hydrostatic pressure applied to failure.	Pipe burst	5250 psig	1033 psig
4" IPS Sch. 5 Type 316L welded pipe with Speedline T/D Insert Flanges expanded both ends.	• Water • Ambient • To failure	Hydrostatic pressure applied to failure.	Pipe burst	2250 psig	411 psig
2" IPS Sch. 10 Aluminum 3003 pipe with Speedline Aluminum Flanges expanded both ends.	Water Ambient To failure	Hydrostatic pressure applied to failure.	Pipe burst	1450 psig	298 psig
4" IPS Sch. 40 Aluminum 3003 pipe with Speedline Aluminum Flanges expanded both ends.	Water Ambient To failure	Hydrostatic pressure applied to failure.	Gasket	1450 psig	344 psig

SHOCK TEST

4" IPS Sch. 10 Type 304L Speedline Tee with T/D Insert Flanges expanded all ends.	● Water ● Ambient ○ To failure	To a low static pressure — sudden surge pressures of increasing magnitude applied to failure.	Gasket	2150 psig	594 psig
---	--------------------------------------	---	--------	-----------	----------

TENSILE TESTS

TEST ASSEMBLY	TEST Media Temperature Time	TEST PROCEDURE	NATURE OF FAILURE	POINT OF FAILURE	Allowable non-shock working pressure for pipe
1" IPS Sch. 40 Type 304L welded pipe with T/D Insert Flanges expanded both ends.	None Ambient To failure	Tensile load to failure applied perpendicular to flanges.	Pipe pulled out of insert.	8950# (10,359 psig equivalent internal hydro- static)	2373 psig
2" IPS Sch. 10 Type 304L welded pipe with T/D Insert Flanges expanded both ends.	None Ambient To failure	Tensile load to failure applied perpendicular to flanges.	Insert pulled out of flange.	39,950# (10,933 psig equivalent internal hydro- static)	1033 psig
2" IPS Sch. 40 Type 304L welded pipe with T/D Insert Flanges expanded both ends.	None Ambient To failure	Tensile load to failure applied perpendicular to flanges.	Pipe pulled out of insert.	35,300# (10,518 psig equivalent internal hydro- static)	1489 psig
4" IPS Sch. 5 Type 304L welded pipe with T/D Insert Flanges expanded both ends.	None Ambient To failure	Tensile load to failure applied perpendicular to flanges.	Test fixture failed.	35,600# (2,414 psig equivalent internal hydro- static)	411 psig

ELEVATED TEMPERATURE TESTS

TEST ASSEMBLY	TEST Media Temperature Time	TEST PROCEDURE	NATURE OF FAILURE	POINT OF FAILURE	PIPING CODE Allowable non-shock working pressure for pipe
2" IPS Sch. 5 Type 304L welded pipe with T/D Insert Flange expanded one end, other end closed off with plate.	SAE #10 Oil Ambient to 650°F 216 Hours	Cycled from ambient to 650°F. Pressure from 0 to 1200 psig.	None	None	343 psig
2" IPS Sch. 5 Type 304L welded pipe with T/D Insert Flange expanded one end.	SAE #10 Oil 675°F To failure	Pressurized to failure.	Gasket	1800 psig	338 psig
2" IPS Sch. 10 Type 304L welded pipe with 300# T/D Insert Flange expanded one end.	SAE #10 Oil 450°F to 520°F 144 Hours	Temperature range 450°F to 520°F. Pressure range 450 psig to 1460 psig.	None	None	631 psig
2" IPS Sch. 10 Type 304L welded pipe with 300# T/D Insert Flange expanded one end.	SAE #10 Oil Ambient to 520°F 28 Hours	Severely cycled from ambient to 520°F. Pressure varied from 0 to 1460 psig.	None	None	631 psig
2" IPS Sch. 10 Type 304L welded pipe with 300# T/D Insert Flange expanded one end.	SAE #10 Oil 580°F To failure	Pressurized to failure.	Gasket	4050 psig	604 psig
3" IPS Sch. 10 Type 304L welded pipe with T/D Insert Flanges expanded both ends.	Water & Steam Ambient to 350/380°F 64 Hours	Cycled every 2 hours from ambient water to 400 psig steam. Test continued at ambient temp, to failure.	None Gasket	None 2922 psig	593 psig 768 psig
4" IPS Sch. 5 Type 304L welded pipe with T/D Insert Flange expanded one end.	SAE #10 Oil Ambient to 650°F 216 Hours	Cycled from ambient to 650°F. Pressures from 0 to 600 psig.	None	None	230 psig
4" IPS Sch. 5 Type 304L welded pipe with T/D Insert Flange expanded one end.	SAE #10 Oil 650°F To failure	Pressurized to failure.	Gasket	750 psig	230 psig

STAINLESS STEEL - SCHEDULE 5S

Pipe Size	90° Elbow	45° Elbow	180° Bend	Cap	Straight Tee	Cross	Lateral	True Y	Type C Stub End
1/2	.13	.12	.25	.02	.25	.33	.51	.28	.07
3/4	.28	.19	.53	.02	.38	.49	.70	.39	.13
1	.36	.23	.75	.06	.50	.65	1.00	.51	.16
11/4	.53	.25	1.06	.08	.75	.95	1.40	.73	.19
11/2	.62	.38	1.25	.14	.88	1.13	1.76	.87	.25
2	1.06	.70	2.00	.18	1.30	1.68	2.61	1.44	.38
21/2	1.63	1.10	3.20	.28	2.38	3.05	4.65	2.30	.70
3	2.88	1.88	4.30	.50	3.25	3.99	6.30	3.62	.88
4	4.80	3.06	8.50	.76	4.75	5.75	9.12	5.80	1.38
6	12.00	7.50	20.80	1.57	11.50	14.15	21.16	14.65	2.75

STAINLESS STEEL - SCHEDULE 10S

Pipe Size	90° Elbow	45° Elbow	180° Bend	Сар	Straight Tee	Cross	Lateral	True Y	Type C Stub End
1/2	.25	.13	.40	.03	.35	.45	.81	.35	.11
3/4	.31	.20	.63	.06	.45	.59	.88	.45	.15
1	.50	.38	1.20	.10	.90	1.15	1.61	.75	.23
11/4	.75	.50	1.80	.13	1.30	1.30 1.63		1.08	.33
11/2	1.00	.67	2.00	.23	1.50	1.50 1.92 2		1.42	.48
2	1.75	1.20	3.20	.30	2.13	2.76	4.30	2.38	.80
21/2	2.50	1.63	4.80	.40	3.63	4.59	6.64	3.46	.96
3	4.00	2.63	6.40	.72	4.50	5.56	9.01	5.06	1.20
4	7.00	4.88	13.50	1.16	6.38	7.81	13.08	8.43	2.00
6	14.00	9.00	26.50	3.25	14.00	17.24	25.92	17.24	3.25

FLANGES — ALIGNING CONNECTORS

Speedline	1/2	3/4	1	11/4	11/2	2	21/2	3	4	6	8	10
T/D Flange Stainless Steel Insert	1.00	1.38	1.75	2.38	2.75	4.50	7.00	8.25	11.63	15.25	51.00	78.00
Aluminum Flange	.44	.50	.63	.75	1.13	1.75	2.50	2.88	4.25	-	=	
Back-Up Flange Forged Steel	1.00	1.25	1.50	2.50	3.31	4.87	7.43	8.75	12.25	14.50	_	-
Aligning Connector Stainless Steel	.06	.10	.13	.15	.18	.20	.43	.53	.75	1.50	_	

UNIONS — STAINLESS STEEL FERRULES — CARBON STEEL NUTS

Speedline	1/2	3/4	1	11/4	11/2	2	21/2	3	4
Expanding Type PE	.45	.88	1.00	1.50	2.38		_	_	-
Welding Type PW	.50	.96	1.13	1.69	1.56	1.70	2.65	3.00	3.50
Butt Weld Type PBW	.59	1.07	1.30	1.91	1.83	2.06	3.06	3.53	4.15

REDUCERS

Pip	e Size	Sch. 5S	Sch. 10S		
3/4	x 1/2	.18	.30		
1	x 1/2	.25	.62		
	x 3/4	.30	.63		
11/4	x 3/4	.33	.72		
	x 1	.35	.74		
1½	x 3/4	.37	.88		
	x 1	.40	.91		
	x 11/4	.43	.94		
2	x 1	.46	1.13		
	x 11/4	.50	1.17		
	x 11/2	.60	1.20		
21/2	x 1	1.00	1.30		
	x 11/4	1.10	1.44		
	x 1½	1.13	1.50		
	x 2	1.20	1.43		
3	x 11/4	1.25	1.70		
	x 11/2	1.30	1.75		
	x 2	1.33	1.80		
	x 21/2	1.40	1.90		
4	x 2	1.50	2.25		
	x 21/2	1.60	2.31		
	x 3	1.63	2.35		
6	x 21/2	5.50	6.75		
	x 3	5.65	6.93		
	x 4	5.69	6.97		

Nickel & Nickel Alloys	1.125
Aluminum	.345
Hastelloy B	1.168
Hastelloy C	1.130

.571

Titanium

CONVERSION FACTORS
OTHER METALS

CHEMICAL COMPOSITION OF CORROSION RESISTANT PIPE

Grade	A.S.T.M.	Carbon %	Manganese Max. %	Phosphorus Max. %	Sulphur Max. %	Silicon Max. %	Nickel %	Chromium %	Molybdenum %	Other	Iron %
Type 304	A-312	0.08 max.	2.00	0.040	0.030	0.75	8.00-11.0	18.0-20.0			Balance
Type 304L	A-312	0.035 max.	2.00	0.040	0.030	0.75	8.00-13.0	18.0-20.0	*****	* * * * * * *	Balance
Type 316	A-312	0.08 max.	2.00	0.040	0.030	0.75	11.0-14.0	16.0-18.0	2.0-3.0		Balance
Type 316L	A-312	0.035 max.	2.00	0.040	0.030	0.75	10.0-15.0	16.0-18.0	2.0-3.0		Balance
Alloy 20Cb-3	B-464	0.07 max.	2.00	0.045	0.035	1.00	32.0-38.0	19.0-21.0	2.00-3.00	Cb plus Ta: Min.—8 x C Max.—1.0% Cu: 3.0-4.0%	Balance
Nickel 200	B-161	0.15 max.	0.35		0.01	0.35	99.0 min.			Copper Max.:—0.25%	0.40 max.
Monel 400	B-165	0.30 max.	2.00		0.024	0.50	63.0-70.0			Copper: Remainder	2.50 max.
Inconel Alloy 600	B-167	0.15 max.	1.0		0.015	0.5	72.0 min.	14.0-17.0		Copper Max.:—0.50%	6.0-10.0
Hastelloy Alloy B	(a)	0.05 max.	1.0	.025	.03	1.0	Balance	1.0	26.0-30.0	Co max.: 2.50% V: 0.20-0.40%	4.0-6.0
Hastelloy Alloy C	(b)	0.08 max.	1.0	.04	.03	1.0	Balance	14.5-16.5	15.0-17.0	Co max.: 2.50% W: 3.0-4.5% V: 0.35%	4.0-7.0
Hastelloy Alloy C-276	(c)	LAP	1.0	18,53.5		LAP	Balance	14.5-16.5	15.0-17.0	Co max.; 2.50% W: 3.0-4.5% V: 0.35% max.	4.0-7.0

LAP-Low As Possible

- (a) ASME Code Case 1323 (Special Ruling) (b) ASME Code Case 1324 (Special Ruling) (c) ASME Code Case 1410 (Special Ruling)

SPEEDLINE, INC.

450 E. Luzerne St. • Philadelphia, PA 19124 P.O. Box 12788 Philadelphia, PA 19134 Phone 215-425-8508

